iNNspector: Visual, Interactive Deep Model Debugging
- URL: http://arxiv.org/abs/2407.17998v1
- Date: Thu, 25 Jul 2024 12:48:41 GMT
- Title: iNNspector: Visual, Interactive Deep Model Debugging
- Authors: Thilo Spinner, Daniel Fürst, Mennatallah El-Assady,
- Abstract summary: We propose a conceptual framework structuring the data space of deep learning experiments.
Our framework captures design dimensions and proposes mechanisms to make this data explorable and tractable.
We present the iNNspector system, which enables tracking of deep learning experiments and provides interactive visualizations of the data.
- Score: 8.997568393450768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning model design, development, and debugging is a process driven by best practices, guidelines, trial-and-error, and the personal experiences of model developers. At multiple stages of this process, performance and internal model data can be logged and made available. However, due to the sheer complexity and scale of this data and process, model developers often resort to evaluating their model performance based on abstract metrics like accuracy and loss. We argue that a structured analysis of data along the model's architecture and at multiple abstraction levels can considerably streamline the debugging process. Such a systematic analysis can further connect the developer's design choices to their impacts on the model behavior, facilitating the understanding, diagnosis, and refinement of deep learning models. Hence, in this paper, we (1) contribute a conceptual framework structuring the data space of deep learning experiments. Our framework, grounded in literature analysis and requirements interviews, captures design dimensions and proposes mechanisms to make this data explorable and tractable. To operationalize our framework in a ready-to-use application, we (2) present the iNNspector system. iNNspector enables tracking of deep learning experiments and provides interactive visualizations of the data on all levels of abstraction from multiple models to individual neurons. Finally, we (3) evaluate our approach with three real-world use-cases and a user study with deep learning developers and data analysts, proving its effectiveness and usability.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - The Extrapolation Power of Implicit Models [2.3526338188342653]
Implicit models are put to the test across various extrapolation scenarios: out-of-distribution, geographical, and temporal shifts.
Our experiments consistently demonstrate significant performance advantage with implicit models.
arXiv Detail & Related papers (2024-07-19T16:01:37Z) - Towards Explainable Artificial Intelligence (XAI): A Data Mining
Perspective [35.620874971064765]
This work takes a "data-centric" view, examining how data collection, processing, and analysis contribute to explainable AI (XAI)
We categorize existing work into three categories subject to their purposes: interpretations of deep models, influences of training data, and insights of domain knowledge.
Specifically, we distill XAI methodologies into data mining operations on training and testing data across modalities.
arXiv Detail & Related papers (2024-01-09T06:27:09Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification.
We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
arXiv Detail & Related papers (2022-05-25T07:54:10Z) - Model Complexity of Deep Learning: A Survey [79.20117679251766]
We conduct a systematic overview of the latest studies on model complexity in deep learning.
We review the existing studies on those two categories along four important factors, including model framework, model size, optimization process and data complexity.
arXiv Detail & Related papers (2021-03-08T22:39:32Z) - A Visual Analytics Framework for Explaining and Diagnosing Transfer
Learning Processes [42.57604833160855]
We present a visual analytics framework for the multi-level exploration of the transfer learning processes when training deep neural networks.
Our framework establishes a multi-aspect design to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural networks.
arXiv Detail & Related papers (2020-09-15T05:59:00Z) - Demystifying Deep Learning in Predictive Spatio-Temporal Analytics: An
Information-Theoretic Framework [20.28063653485698]
We provide a comprehensive framework for deep learning model design and information-theoretic analysis.
First, we develop and demonstrate a novel interactively-connected deep recurrent neural network (I$2$DRNN) model.
Second, to theoretically prove that our designed model can learn multi-scale-temporal dependency in PSTA tasks, we provide an information-theoretic analysis.
arXiv Detail & Related papers (2020-09-14T10:05:14Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.