Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective
- URL: http://arxiv.org/abs/2012.06250v2
- Date: Fri, 16 Apr 2021 08:43:03 GMT
- Title: Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective
- Authors: A. Ren\'e Geist and Sebastian Trimpe
- Abstract summary: We study supervised regression models that combine rigid-body mechanics with data-driven modelling techniques.
We provide a unified view on the combination of data-driven regression models, such as neural networks and Gaussian processes, with analytical model priors.
- Score: 5.597839822252915
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate models of mechanical system dynamics are often critical for
model-based control and reinforcement learning. Fully data-driven dynamics
models promise to ease the process of modeling and analysis, but require
considerable amounts of data for training and often do not generalize well to
unseen parts of the state space. Combining data-driven modelling with prior
analytical knowledge is an attractive alternative as the inclusion of
structural knowledge into a regression model improves the model's data
efficiency and physical integrity. In this article, we survey supervised
regression models that combine rigid-body mechanics with data-driven modelling
techniques. We analyze the different latent functions (such as kinetic energy
or dissipative forces) and operators (such as differential operators and
projection matrices) underlying common descriptions of rigid-body mechanics.
Based on this analysis, we provide a unified view on the combination of
data-driven regression models, such as neural networks and Gaussian processes,
with analytical model priors. Further, we review and discuss key techniques for
designing structured models such as automatic differentiation.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z) - Structured Mechanical Models for Robot Learning and Control [38.52004843488286]
Black-box neural networks suffer from data-inefficiency and the difficulty to incorporate prior knowledge.
We introduce Structured Mechanical Models that are data-efficient, easily amenable to prior knowledge, and easily usable with model-based control techniques.
We demonstrate that they generalize better from limited data and yield more reliable model-based controllers on a variety of simulated robotic domains.
arXiv Detail & Related papers (2020-04-21T21:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.