論文の概要: Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.02342v1
- Date: Mon, 1 Jul 2024 15:37:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 14:56:27.087429
- Title: Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning
- Title(参考訳): フェデレーション付きグラフニューラルネットワーク多元強化学習を用いたベクトルエッジコンピューティングにおける情報の最適化
- Authors: Wenhua Wang, Qiong Wu, Pingyi Fan, Nan Cheng, Wen Chen, Jiangzhou Wang, Khaled B. Letaief,
- Abstract要約: 本稿では,データ更新の鍵となる情報時代(AoI)に着目し,RSU通信資源制約下での車両のタスクオフロード問題について検討する。
本稿では,Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) と名付けたグラフニューラルネットワーク(GNN)を組み合わせた分散分散学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 44.17644657738893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of intelligent vehicles and Intelligent Transport Systems (ITS), the sensors such as cameras and LiDAR installed on intelligent vehicles provides higher capacity of executing computation-intensive and delay-sensitive tasks, thereby raising deployment costs. To address this issue, Vehicular Edge Computing (VEC) has been proposed to process data through Road Side Units (RSUs) to support real-time applications. This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints. We adopt a Multi-agent Deep Reinforcement Learning (MADRL) approach, allowing vehicles to autonomously make optimal data offloading decisions. However, MADRL poses risks of vehicle information leakage during communication learning and centralized training. To mitigate this, we employ a Federated Learning (FL) framework that shares model parameters instead of raw data to protect the privacy of vehicle users. Building on this, we propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL), to optimize AoI across the system. For the first time, road scenarios are constructed as graph data structures, and a GNN-based federated learning framework is proposed, effectively combining distributed and centralized federated aggregation. Furthermore, we propose a new MADRL algorithm that simplifies decision making and enhances offloading efficiency, further reducing the decision complexity. Simulation results demonstrate the superiority of our proposed approach to other methods through simulations.
- Abstract(参考訳): インテリジェントな車両とインテリジェントトランスポートシステム(ITS)の急速な開発により、インテリジェントな車両に搭載されたカメラやLiDARのようなセンサーは、計算集約的で遅延に敏感なタスクを実行する能力が高くなり、デプロイメントコストが増大する。
この問題に対処するため、Vehicular Edge Computing (VEC) は、リアルタイムアプリケーションをサポートするためにロードサイドユニット (RSU) を通じてデータを処理するために提案されている。
本稿では,データ更新の鍵となる情報時代(AoI)に着目し,RSU通信資源制約下での車両のタスクオフロード問題について検討する。
我々はマルチエージェントディープ強化学習(MADRL)アプローチを採用し、車両が最適なデータオフロード決定を自律的に行えるようにする。
しかし,MADRLは,コミュニケーション学習や集中訓練において,車両情報漏洩のリスクを生じさせる。
これを軽減するために、車両ユーザのプライバシを保護するために、生データの代わりにモデルパラメータを共有するフェデレートラーニング(FL)フレームワークを使用します。
そこで我々は,Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) というグラフニューラルネットワーク(GNN)を組み合わせた分散分散学習フレームワークを提案する。
道路のシナリオをグラフデータ構造として構築し,分散と集中の融合を効果的に組み合わせたGNNベースのフェデレーション学習フレームワークを提案する。
さらに,意思決定を簡略化し,オフロード効率を向上し,決定の複雑さをさらに軽減する新しいMADRLアルゴリズムを提案する。
シミュレーションにより,提案手法が他の手法よりも優れていることを示す。
関連論文リスト
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
適応的,リアルタイムな意思決定を通じて計算オフロードを最適化するために,強化学習(RL)と深層強化学習(DRL)フレームワークの可能性を検討する。
本稿では,車載ネットワークにおけるDRLの理解と適用を促進することを目的とした,標準化された学習モデル,最適化された報酬構造,協調型マルチエージェントシステムなどの重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-10T19:02:20Z) - Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
本稿では,これらの課題に対処する新しいU字型分割学習(U-SFL)フレームワークを提案する。
U-SFLは、生のデータとラベルの両方をVU側に置くことで、プライバシー保護を強化することができる。
通信効率を最適化するために,送信データの次元を著しく低減する意味認識型自動エンコーダ(SAE)を導入する。
論文 参考訳(メタデータ) (2024-11-11T07:59:13Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Knowledge-Driven Multi-Agent Reinforcement Learning for Computation
Offloading in Cybertwin-Enabled Internet of Vehicles [24.29177900273616]
我々は,サイバトウィン対応IoVにおけるタスクオフロードの遅延を低減するために,知識駆動型マルチエージェント強化学習(KMARL)手法を提案する。
具体的には、検討されたシナリオにおいて、サイバートウィンは、各車両が情報を交換し、仮想空間におけるオフロード決定を行うための通信エージェントとして機能する。
論文 参考訳(メタデータ) (2023-08-04T09:11:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Semi-asynchronous Hierarchical Federated Learning for Cooperative
Intelligent Transportation Systems [10.257042901204528]
コラボレーティブ・インテリジェント・トランスポート・システム(C-ITS)は、自動運転車や道路インフラの安全性、効率性、持続可能性、快適なサービスを提供する有望なネットワークである。
C-ITSのコンポーネントは通常大量のデータを生成するため、データサイエンスを探索することは困難である。
本稿では,C-ITSのためのSemi-a synchronous Federated Learning (SHFL) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-18T07:44:34Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
フェデレーション学習は、中央にデータをアップロードすることなく、分散されたスマートデバイスから大量のデータを分析できる。
本稿では、IoTのリソース制約されたスマートデバイスにまたがるデータから機械学習モデルを効率的にトレーニングするためのDP-PASGDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-28T04:32:54Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。