論文の概要: Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey
- arxiv url: http://arxiv.org/abs/2502.06963v1
- Date: Mon, 10 Feb 2025 19:02:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:36.042884
- Title: Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey
- Title(参考訳): 深部強化学習を用いたベクトルエッジコンピューティングにおけるタスクオフロード:サーベイ
- Authors: Ashab Uddin, Ahmed Hamdi Sakr, Ning Zhang,
- Abstract要約: 適応的,リアルタイムな意思決定を通じて計算オフロードを最適化するために,強化学習(RL)と深層強化学習(DRL)フレームワークの可能性を検討する。
本稿では,車載ネットワークにおけるDRLの理解と適用を促進することを目的とした,標準化された学習モデル,最適化された報酬構造,協調型マルチエージェントシステムなどの重要な側面に焦点を当てる。
- 参考スコア(独自算出の注目度): 9.21746609806009
- License:
- Abstract: The increasing demand for Intelligent Transportation Systems (ITS) has introduced significant challenges in managing the complex, computation-intensive tasks generated by modern vehicles while offloading tasks to external computing infrastructures such as edge computing (EC), nearby vehicular , and UAVs has become influential solution to these challenges. However, traditional computational offloading strategies often struggle to adapt to the dynamic and heterogeneous nature of vehicular environments. In this study, we explored the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making, and we have thoroughly investigated the Markov Decision Process (MDP) approaches on the existing literature. The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks. Our findings offer insights into enhancing the efficiency, scalability, and robustness of ITS, setting the stage for future innovations in this rapidly evolving field.
- Abstract(参考訳): インテリジェントトランスポーテーション・システム(ITS)の需要の増加は、現代の車両が生み出す複雑で計算集約的なタスクを管理する上で、エッジ・コンピューティング(EC)や近くの車両、UAVといった外部コンピューティング・インフラストラクチャにタスクをオフロードする上で大きな課題をもたらしている。
しかし、伝統的な計算オフロード戦略は、しばしば車両環境の動的で不均一な性質に適応するのに苦労する。
本研究では,適応的かつリアルタイムな意思決定を通じて計算オフロードを最適化するための強化学習(RL)と深層強化学習(DRL)フレームワークの可能性について検討し,既存の文献に対するマルコフ決定プロセス(MDP)アプローチを徹底的に検討した。
本稿では,車載ネットワークにおけるDRLの理解と適用を促進することを目的とした,標準化された学習モデル,最適化された報酬構造,協調型マルチエージェントシステムなどの重要な側面に焦点を当てる。
我々の発見は、ITSの効率性、スケーラビリティ、堅牢性を高めるための洞察を与え、この急速に発展する分野における将来のイノベーションのステージを設定します。
関連論文リスト
- Self-Driving Car Racing: Application of Deep Reinforcement Learning [0.0]
このプロジェクトの目的は、OpenAI Gymnasium CarRacing環境でシミュレーションカーを効率的に駆動するAIエージェントを開発することである。
本稿では,DQN(Deep Q-Network)やPPO(Proximal Policy Optimization)などのRLアルゴリズムや,トランスファーラーニングとリカレントニューラルネットワーク(RNN)を組み込んだ新たな適応手法について検討する。
論文 参考訳(メタデータ) (2024-10-30T07:32:25Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
本稿では,データ更新の鍵となる情報時代(AoI)に着目し,RSU通信資源制約下での車両のタスクオフロード問題について検討する。
本稿では,Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) と名付けたグラフニューラルネットワーク(GNN)を組み合わせた分散分散学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-01T15:37:38Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
強化学習(Reinforcement Learning, RL)は、自動化とロボット工学の領域において、変革的なアプローチとして登場した。
本研究は、フィードフォワード生ライダーと速度データのみを用いて、レース環境をナビゲートするRLエージェントを開発し、訓練する。
エージェントのパフォーマンスは、実世界のレースシナリオで実験的に評価される。
論文 参考訳(メタデータ) (2023-09-01T07:03:05Z) - Knowledge-Driven Multi-Agent Reinforcement Learning for Computation
Offloading in Cybertwin-Enabled Internet of Vehicles [24.29177900273616]
我々は,サイバトウィン対応IoVにおけるタスクオフロードの遅延を低減するために,知識駆動型マルチエージェント強化学習(KMARL)手法を提案する。
具体的には、検討されたシナリオにおいて、サイバートウィンは、各車両が情報を交換し、仮想空間におけるオフロード決定を行うための通信エージェントとして機能する。
論文 参考訳(メタデータ) (2023-08-04T09:11:37Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
モバイルエッジコンピューティング(MEC)は、第5世代(5G)ネットワークなどにおける計算と遅延に敏感なタスクのための新しいパラダイムであると考えた。
本稿では、フリー対応RLに関する総合的な研究レビューと、開発のための洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T10:02:54Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。