論文の概要: Generative Large Language Models in Automated Fact-Checking: A Survey
- arxiv url: http://arxiv.org/abs/2407.02351v2
- Date: Wed, 30 Oct 2024 07:57:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:19.306329
- Title: Generative Large Language Models in Automated Fact-Checking: A Survey
- Title(参考訳): 自動Fact-Checkingにおける大規模言語モデルの作成
- Authors: Ivan Vykopal, Matúš Pikuliak, Simon Ostermann, Marián Šimko,
- Abstract要約: 大きな言語モデル(LLM)は、膨大な知識と高度な推論能力でファクトチェッカーをサポートする有望な機会を提供する。
本調査では, ファクトチェックにおけるジェネレーティブLLMの応用について検討し, モデル作成の促進と微調整のための様々なアプローチと技術について紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The dissemination of false information on online platforms presents a serious societal challenge. While manual fact-checking remains crucial, Large Language Models (LLMs) offer promising opportunities to support fact-checkers with their vast knowledge and advanced reasoning capabilities. This survey explores the application of generative LLMs in fact-checking, highlighting various approaches and techniques for prompting or fine-tuning these models. By providing an overview of existing methods and their limitations, the survey aims to enhance the understanding of how LLMs can be used in fact-checking and to facilitate further progress in their integration into the fact-checking process.
- Abstract(参考訳): オンラインプラットフォーム上での偽情報の拡散は、深刻な社会的課題を示している。
手動のファクトチェックは依然として重要ですが、Large Language Models(LLMs)は、ファクトチェックを膨大な知識と高度な推論能力でサポートする、有望な機会を提供します。
本調査では, ファクトチェックにおけるジェネレーティブLLMの応用について検討し, モデル作成の促進と微調整のための様々なアプローチ, テクニックを強調した。
本調査は,既存手法とその限界の概要を提供することで,事実確認におけるLCMの活用方法の理解を深め,事実確認プロセスへの統合のさらなる進展を促進することを目的としている。
関連論文リスト
- Multimodal Large Language Models to Support Real-World Fact-Checking [80.41047725487645]
MLLM(Multimodal large language model)は、膨大な情報処理において人間を支援する能力を持つ。
MLLMはすでにファクトチェックツールとして使用されていますが、その能力や制限については検討中です。
本稿では,現実のファクトチェックを容易にするために,現在のマルチモーダルモデルの能力を体系的に評価するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-06T11:32:41Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Are Large Language Models Good Fact Checkers: A Preliminary Study [26.023148371263012]
大規模言語モデル(LLM)は、その卓越した推論能力と広範な知識リポジトリによって、大きな注目を集めている。
本研究の目的は,特定のファクトチェックサブタスクに対処する上で,様々なLSMを包括的に評価することである。
論文 参考訳(メタデータ) (2023-11-29T05:04:52Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
大規模言語モデル(LLM)は、様々な領域において幅広いタスクにまたがる顕著な機能を示している。
印象的なパフォーマンスにもかかわらず、彼らは世代内の事実上の誤りのために信頼できない。
信頼度を評価し、異なるタスクで調整することで、リスクを軽減し、LLMがより良い世代を創出できるようになります。
論文 参考訳(メタデータ) (2023-11-14T16:43:29Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Retrieving Multimodal Information for Augmented Generation: A Survey [35.33076940985081]
マルチモーダルな知識を検索することで生成モデルを補助・拡張する手法について検討する。
このような手法は、事実性、推論、解釈可能性、堅牢性といった重要な問題に対する有望な解決策を提供する。
論文 参考訳(メタデータ) (2023-03-20T05:07:41Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。