論文の概要: Similarity Distance-Based Label Assignment for Tiny Object Detection
- arxiv url: http://arxiv.org/abs/2407.02394v2
- Date: Wed, 3 Jul 2024 05:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 12:45:59.110321
- Title: Similarity Distance-Based Label Assignment for Tiny Object Detection
- Title(参考訳): Tinyオブジェクト検出のための類似距離に基づくラベルアサインメント
- Authors: Shuohao Shi, Qiang Fang, Tong Zhao, Xin Xu,
- Abstract要約: そこで我々は,SimD(Simisity Distance)と呼ばれるシンプルだが効果的な戦略を導入し,ボックス間の類似性を評価する。
我々のアプローチは、ラベル割り当てやNon Maximum Suppression(NMS)のためのIoUの代わりに、一般的なアンカーベース検出器に適用できる。
4つの主流となる小型物体検出データセットの実験により,本手法の優れた性能が示された。
- 参考スコア(独自算出の注目度): 17.059514012235354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tiny object detection is becoming one of the most challenging tasks in computer vision because of the limited object size and lack of information. The label assignment strategy is a key factor affecting the accuracy of object detection. Although there are some effective label assignment strategies for tiny objects, most of them focus on reducing the sensitivity to the bounding boxes to increase the number of positive samples and have some fixed hyperparameters need to set. However, more positive samples may not necessarily lead to better detection results, in fact, excessive positive samples may lead to more false positives. In this paper, we introduce a simple but effective strategy named the Similarity Distance (SimD) to evaluate the similarity between bounding boxes. This proposed strategy not only considers both location and shape similarity but also learns hyperparameters adaptively, ensuring that it can adapt to different datasets and various object sizes in a dataset. Our approach can be simply applied in common anchor-based detectors in place of the IoU for label assignment and Non Maximum Suppression (NMS). Extensive experiments on four mainstream tiny object detection datasets demonstrate superior performance of our method, especially, 1.8 AP points and 4.1 AP points of very tiny higher than the state-of-the-art competitors on AI-TOD. Code is available at: \url{https://github.com/cszzshi/SimD}.
- Abstract(参考訳): 微妙な物体検出は、限られた物体の大きさと情報の不足により、コンピュータビジョンにおいて最も困難なタスクの1つになりつつある。
ラベル割り当て戦略は、オブジェクト検出の精度に影響を与える重要な要素である。
小さなオブジェクトに対する効果的なラベル割り当て戦略はいくつかあるが、多くの場合、正のサンプル数を増やすために境界ボックスに対する感度を低下させ、固定されたハイパーパラメータを設定する必要がある。
しかし、より陽性なサンプルは必ずしもより良い検出結果をもたらすとは限らないが、実際、過剰な陽性なサンプルはより偽陽性をもたらす可能性がある。
本稿では,ボックス間の類似性を評価するためのSimity Distance (SimD) という,シンプルだが効果的な戦略を提案する。
提案した戦略は、位置と形状の類似性だけでなく、ハイパーパラメータを適応的に学習することで、データセット内のさまざまなデータセットやさまざまなオブジェクトサイズに適応できるようにする。
我々のアプローチは、ラベル割り当てやNon Maximum Suppression(NMS)のために、IoUの代わりに一般的なアンカーベースの検出器に簡単に適用できる。
4つの主流となる小さなオブジェクト検出データセットに対する大規模な実験では、特に1.8のAPポイントと4.1のAPポイントがAI-TODの最先端の競合に比べて非常に高い性能を示した。
コードは: \url{https://github.com/cszzshi/SimD}.comで入手できる。
関連論文リスト
- ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
小さなオブジェクトは通常、わずかに分散され、局所的にクラスタ化される。
画像の非対象背景領域において、大量の特徴抽出計算を無駄にする。
本稿では,検出器のバックボーンを再利用して,特徴レベルのオブジェクト探索とパッチスライシングを行う方法を提案する。
論文 参考訳(メタデータ) (2024-07-23T12:21:23Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
本稿では,SOOD++ と呼ばれる簡易かつ効果的な半教師付きオブジェクト指向検出手法を提案する。
具体的には、空中画像からの物体は、通常任意の向き、小さなスケール、集約である。
様々なラベル付き環境下での多目的オブジェクトデータセットに対する大規模な実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T07:03:51Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - A Large-scale Multiple-objective Method for Black-box Attack against
Object Detection [70.00150794625053]
我々は、真正の確率を最小化し、偽正の確率を最大化し、より多くの偽正の物体が新しい真正の有界箱を作らないようにする。
我々は、GARSDCと呼ばれるランダム・サブセット選択とディバイド・アンド・コンカーによる標準的な遺伝的アルゴリズムを拡張し、効率を大幅に改善する。
最先端攻撃法と比較して、GARSDCはmAPでは平均12.0、広範囲な実験ではクエリでは約1000倍減少する。
論文 参考訳(メタデータ) (2022-09-16T08:36:42Z) - RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object
Detection [45.10513110142015]
現在のアンカーベースまたはアンカーフリーなラベル割り当てパラダイムは、多くのアウトリーな小さな基底真理サンプルを発生させる。
本稿では,小物体検出のためのガウス受容場に基づくラベルアサインメント(RFLA)戦略を提案する。
当社のアプローチは、AI-TODデータセットの4.0APポイントで最先端の競合より優れています。
論文 参考訳(メタデータ) (2022-08-18T09:35:56Z) - Detecting tiny objects in aerial images: A normalized Wasserstein
distance and a new benchmark [45.10513110142015]
本稿では, 正規化ワッサースタイン距離 (NWD) と呼ばれる新しい評価基準と, 小型物体検出のためのRanKing-based Assigning (RKA) 戦略を提案する。
提案したNWD-RKA戦略は、標準のIoUしきい値に基づくものを置き換えるために、あらゆる種類のアンカーベースの検出器に容易に組み込むことができる。
4つのデータセットでテストされたNWD-RKAは、大きなマージンで小さなオブジェクト検出性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-06-28T13:33:06Z) - Dynamic Label Assignment for Object Detection by Combining Predicted and
Anchor IoUs [20.41563386339572]
本稿では,予測付きトレーニング状況に基づいてラベル割り当てを動的に行うための,シンプルで効果的な手法を提案する。
本手法は,適応ラベル代入アルゴリズムによる検出モデルの性能改善を示す。
論文 参考訳(メタデータ) (2022-01-23T23:14:07Z) - Decoupled Adaptation for Cross-Domain Object Detection [69.5852335091519]
クロスドメインオブジェクト検出は、オブジェクト分類よりも難しい。
D-adaptは4つのクロスドメインオブジェクト検出タスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-10-06T08:43:59Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
現在のアルゴリズムでは、データセット内のトレーニングサンプルやカテゴリの不均衡が不足している。
本稿では,HOI検出のためのDECAugと呼ばれる効率的かつ効率的なデータ拡張手法を提案する。
実験の結果,V-COCOおよびHICODETデータセットの3.3mAPと1.6mAPの改善が得られた。
論文 参考訳(メタデータ) (2020-10-02T13:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。