論文の概要: LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations
- arxiv url: http://arxiv.org/abs/2407.02514v3
- Date: Tue, 6 Aug 2024 06:39:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 18:32:55.312243
- Title: LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations
- Title(参考訳): LOGIC-LM++:シンボリックな定式化のためのマルチステップリファインメント
- Authors: Shashank Kirtania, Priyanshu Gupta, Arjun Radhakirshna,
- Abstract要約: 本稿では Logic-LM++ を改良した Logic-LM++ を提案する。
LLMの機能をペアで比較し、LLMが提案する改善点の評価を可能にする。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we examine the limitations of Large Language Models (LLMs) for complex reasoning tasks. Although recent works have started to employ formal languages as an intermediate representation for reasoning tasks, they often face challenges in accurately generating and refining these formal specifications to ensure correctness. To address these issues, this paper proposes Logic-LM++, an improvement on Logic-LM . It uses the ability of LLMs to do pairwise comparisons, allowing the evaluation of the refinements suggested by the LLM. The paper demonstrates that Logic-LM++ outperforms Logic-LM and other contemporary techniques across natural language reasoning tasks on three datasets, FOLIO, ProofWriter and AR-LSAT, with an average improvement of 18.5% on standard prompting, 12.3% on chain of thought prompting and 5% on Logic-LM.
- Abstract(参考訳): 本稿では,複雑な推論タスクに対するLarge Language Models(LLM)の限界について検討する。
最近の研究は、推論タスクの中間表現として形式言語を使い始めたが、それらの形式仕様を正確に生成し、修正して正確性を保証するという課題に直面していることが多い。
そこで本研究では,Logic-LM++の改良であるLogic-LM++を提案する。
LLMの機能をペアで比較し、LLMが提案する改善点の評価を可能にする。
この論文は、Logic-LM++が3つのデータセット(FOLIO、ProofWriter、AR-LSAT)で自然言語推論タスクにまたがってLogic-LMや他の現代の技術よりも優れており、標準のプロンプトでは平均18.5%、思考の連鎖では12.3%、Logic-LMでは5%であることを示した。
関連論文リスト
- Can Language Models Pretend Solvers? Logic Code Simulation with LLMs [3.802945676202634]
トランスフォーマーベースの大規模言語モデル(LLM)は、論理問題に対処する上で大きな可能性を示している。
この研究は、論理コードシミュレーションという新しい側面に発展し、論理プログラムの結果を予測するために論理解法をエミュレートするよう LLM に強制する。
論文 参考訳(メタデータ) (2024-03-24T11:27:16Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - Zero-Shot Question Answering over Financial Documents using Large
Language Models [0.18749305679160366]
我々は,財務報告に対するマルチホップ数値推論を必要とする複雑な問題に答えるために,大規模言語モデル(LLM)に基づくアプローチを導入する。
LLMを誘導する新しいゼロショットプロンプトを使用して、必要な推論をPythonプログラムやドメイン固有言語にエンコードします。
論文 参考訳(メタデータ) (2023-11-19T16:23:34Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
大規模言語モデル(LLM)は人間のような推論能力を示しているが、それでも複雑な論理的問題に悩まされている。
本稿では,論理問題の解法を改善するために,LLMとシンボリックソルバを統合した新しいフレームワークであるLogic-LMを紹介する。
論文 参考訳(メタデータ) (2023-05-20T22:25:38Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。