論文の概要: Can Language Models Pretend Solvers? Logic Code Simulation with LLMs
- arxiv url: http://arxiv.org/abs/2403.16097v2
- Date: Thu, 28 Mar 2024 06:56:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 10:59:24.964176
- Title: Can Language Models Pretend Solvers? Logic Code Simulation with LLMs
- Title(参考訳): 言語モデルは解を前倒しできるか? LLMを用いた論理コードシミュレーション
- Authors: Minyu Chen, Guoqiang Li, Ling-I Wu, Ruibang Liu, Yuxin Su, Xi Chang, Jianxin Xue,
- Abstract要約: トランスフォーマーベースの大規模言語モデル(LLM)は、論理問題に対処する上で大きな可能性を示している。
この研究は、論理コードシミュレーションという新しい側面に発展し、論理プログラムの結果を予測するために論理解法をエミュレートするよう LLM に強制する。
- 参考スコア(独自算出の注目度): 3.802945676202634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems. capitalizing on the great capabilities of LLMs for code-related activities, several frameworks leveraging logical solvers for logic reasoning have been proposed recently. While existing research predominantly focuses on viewing LLMs as natural language logic solvers or translators, their roles as logic code interpreters and executors have received limited attention. This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs. To further investigate this novel task, we formulate our three research questions: Can LLMs efficiently simulate the outputs of logic codes? What strength arises along with logic code simulation? And what pitfalls? To address these inquiries, we curate three novel datasets tailored for the logic code simulation task and undertake thorough experiments to establish the baseline performance of LLMs in code simulation. Subsequently, we introduce a pioneering LLM-based code simulation technique, Dual Chains of Logic (DCoL). This technique advocates a dual-path thinking approach for LLMs, which has demonstrated state-of-the-art performance compared to other LLM prompt strategies, achieving a notable improvement in accuracy by 7.06% with GPT-4-Turbo.
- Abstract(参考訳): トランスフォーマーベースの大規模言語モデル(LLM)は、論理問題に対処する上で大きな可能性を示している。
コード関連アクティビティのためのLLMの優れた機能を活用して、論理的推論に論理的解法を利用するいくつかのフレームワークが最近提案されている。
既存の研究は、LLMを自然言語の論理解法や翻訳者と見なすことに重点を置いているが、それらのロジックコードインタプリタや実行者の役割は、あまり注目されていない。
この研究は、論理コードシミュレーションという新しい側面に発展し、論理プログラムの結果を予測するために論理解法をエミュレートするよう LLM に強制する。
LLMは論理コードの出力を効率的にシミュレートできるのか?
ロジックコードのシミュレーションとともに、どのような強みが生じるのか?
落とし穴は?
これらの疑問に対処するため、我々は、論理コードシミュレーションタスクに適した3つの新しいデータセットをキュレートし、コードシミュレーションにおけるLCMのベースライン性能を確立するための徹底的な実験を行った。
次に,LLMに基づくコードシミュレーション手法であるDual Chains of Logic (DCoL)を紹介する。
GPT-4-Turboの精度は7.06%向上した。
関連論文リスト
- Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
大規模言語モデル(LLM)は、推論タスクにおいて顕著な性能を示すが、数学的および複雑な論理的推論において制限に直面している。
LLMの論理的推論能力の向上を目的とした新しいフレームワークであるReversal of Thought (RoT)を提案する。
RoT は Preference-Guided Reverse Reasoning warm-up 戦略を利用している。
論文 参考訳(メタデータ) (2024-10-16T07:44:28Z) - Logic-Enhanced Language Model Agents for Trustworthy Social Simulations [3.5083201638203154]
本研究では,人間のインタラクションモデルとしてのゲーム理論シナリオにおける意思決定に焦点を当てた。
本稿では,社会シミュレーションの信頼性を高める新しいアプローチである論理強化言語モデルエージェント(LELMA)フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-08-28T18:25:35Z) - Case2Code: Learning Inductive Reasoning with Synthetic Data [105.89741089673575]
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
まず、合成したCase2Codeタスクにおける代表LLMを評価し、LLMにおいてケース・ツー・コード誘導が困難であることを実証する。
実験結果から,このような帰納的学習は,Case2Codeの性能だけでなく,学習用LLMの各種符号化能力の向上にも寄与することがわかった。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations [1.024113475677323]
本稿では Logic-LM++ を改良した Logic-LM++ を提案する。
LLMの機能をペアで比較し、LLMが提案する改善点の評価を可能にする。
論文 参考訳(メタデータ) (2024-06-22T12:50:41Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
大規模言語モデル(LLM)は人間のような推論能力を示しているが、それでも複雑な論理的問題に悩まされている。
本稿では,論理問題の解法を改善するために,LLMとシンボリックソルバを統合した新しいフレームワークであるLogic-LMを紹介する。
論文 参考訳(メタデータ) (2023-05-20T22:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。