論文の概要: Research on Autonomous Robots Navigation based on Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.02539v3
- Date: Wed, 14 Aug 2024 04:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 17:36:35.206244
- Title: Research on Autonomous Robots Navigation based on Reinforcement Learning
- Title(参考訳): 強化学習に基づく自律ロボットナビゲーションに関する研究
- Authors: Zixiang Wang, Hao Yan, Yining Wang, Zhengjia Xu, Zhuoyue Wang, Zhizhong Wu,
- Abstract要約: 我々は、経路計画と意思決定プロセスを最適化するために、Deep Q Network (DQN) と Proximal Policy Optimization (PPO) モデルを使用します。
様々な複雑なシナリオにおいて,これらのモデルの有効性とロバスト性を検証した。
- 参考スコア(独自算出の注目度): 13.559881645869632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.
- Abstract(参考訳): 強化学習は、環境との継続的な相互作用を通じてリアルタイムフィードバック報酬信号に基づいて意思決定を継続的に最適化し、適応性と自己学習能力を示す。
近年,ロボットの自律的なナビゲーションを実現するための重要な手法の1つとなっている。
本研究では,強化学習に基づく自律型ロボットナビゲーション手法を提案する。
本稿では,DQNとPPOモデルを用いて,ロボットと環境の継続的な相互作用による経路計画と意思決定プロセスの最適化と,リアルタイムフィードバックによる報酬信号について述べる。
Q値関数とディープニューラルネットワークを組み合わせることで、ディープQネットワークは高次元の状態空間を処理し、複雑な環境で経路計画を実現することができる。
ポリシー関数を最適化することで、ロボットが環境情報をより効率的に探索・活用できる戦略勾配に基づく手法である。
これらの方法は、未知の環境におけるロボットのナビゲーション能力を改善するだけでなく、適応性と自己学習能力を向上させる。
複数のトレーニングとシミュレーション実験を通じて,これらのモデルの有効性とロバスト性を様々な複雑なシナリオで検証した。
関連論文リスト
- Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
目標条件付き自己回帰モデルを導入し,個人間の複雑な相互作用を捉える。
このモデルは、潜在的なロボット軌道サンプルを処理し、周囲の個人の反応を予測する。
論文 参考訳(メタデータ) (2024-08-07T14:32:41Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
本研究では,複雑な環境下での自律走行のための移動ロボットの訓練における深層強化学習の適用について検討する。
このロボットは、LiDARセンサデータとディープニューラルネットワークを用いて、障害物を回避しつつ、特定の目標に向かって誘導する制御信号を生成する。
論文 参考訳(メタデータ) (2024-05-25T15:08:36Z) - SELFI: Autonomous Self-Improvement with Reinforcement Learning for Social Navigation [54.97931304488993]
体験と対話し、改善する自己改善ロボットは、ロボットシステムの現実的な展開の鍵となる。
本研究では,オンラインロボット体験を活用したオンライン学習手法であるSELFIを提案する。
本研究では, 衝突回避の観点からの改善と, より社会的に順応する行動について報告する。
論文 参考訳(メタデータ) (2024-03-01T21:27:03Z) - Back-stepping Experience Replay with Application to Model-free Reinforcement Learning for a Soft Snake Robot [15.005962159112002]
Back-stepping Experience Replay (BER)は、任意の外部強化学習アルゴリズムと互換性がある。
柔らかいヘビロボットの移動とナビゲーションのためのモデルレスRLアプローチにおけるBERの適用について述べる。
論文 参考訳(メタデータ) (2024-01-21T02:17:16Z) - Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
本研究では,ロボットが目的達成に向けて効果的に移動できるよう訓練するための単目的と多目的の強化学習法の比較分析を行った。
報酬関数を変更して報酬のベクターを返却し、それぞれ異なる目的に関連付けることで、ロボットはそれぞれの目標を効果的にバランスさせるポリシーを学ぶ。
論文 参考訳(メタデータ) (2023-12-13T08:00:26Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Robot path planning using deep reinforcement learning [0.0]
強化学習法は、地図のないナビゲーションタスクに代わる手段を提供する。
障害物回避と目標指向ナビゲーションタスクの両方に深部強化学習エージェントを実装した。
報酬関数の変更によるエージェントの挙動と性能の変化を解析する。
論文 参考訳(メタデータ) (2023-02-17T20:08:59Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
本稿では,ロボットが動的変化に迅速に適応できるメタ学習手法を提案する。
提案手法は高雑音環境における動的変化への適応性を著しく改善する。
我々は、動的に変化しながら歩くことを学習する四足歩行ロボットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-03-02T22:56:27Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。