論文の概要: Robot path planning using deep reinforcement learning
- arxiv url: http://arxiv.org/abs/2302.09120v1
- Date: Fri, 17 Feb 2023 20:08:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 20:15:57.630439
- Title: Robot path planning using deep reinforcement learning
- Title(参考訳): 深層強化学習を用いたロボット経路計画
- Authors: Miguel Quinones-Ramirez, Jorge Rios-Martinez, Victor Uc-Cetina
- Abstract要約: 強化学習法は、地図のないナビゲーションタスクに代わる手段を提供する。
障害物回避と目標指向ナビゲーションタスクの両方に深部強化学習エージェントを実装した。
報酬関数の変更によるエージェントの挙動と性能の変化を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous navigation is challenging for mobile robots, especially in an
unknown environment. Commonly, the robot requires multiple sensors to map the
environment, locate itself, and make a plan to reach the target. However,
reinforcement learning methods offer an alternative to map-free navigation
tasks by learning the optimal actions to take. In this article, deep
reinforcement learning agents are implemented using variants of the deep Q
networks method, the D3QN and rainbow algorithms, for both the obstacle
avoidance and the goal-oriented navigation task. The agents are trained and
evaluated in a simulated environment. Furthermore, an analysis of the changes
in the behaviour and performance of the agents caused by modifications in the
reward function is conducted.
- Abstract(参考訳): 自律ナビゲーションは、特に未知の環境では、移動ロボットにとって難しい。
一般的に、ロボットは環境をマッピングし、自らを特定し、目標に到達する計画を立てるために複数のセンサーを必要とする。
しかし、強化学習法は、最適なアクションを学習することで、マップフリーなナビゲーションタスクの代替を提供する。
本稿では,D3QNとレインボーアルゴリズムという深層Qネットワーク手法の変種を用いて,障害物回避と目標指向ナビゲーションタスクの両方に深部強化学習エージェントを実装した。
エージェントは、シミュレーション環境で訓練され、評価される。
さらに、報酬機能の変更によるエージェントの挙動や性能の変化の分析を行う。
関連論文リスト
- Research on Autonomous Robots Navigation based on Reinforcement Learning [13.559881645869632]
我々は、経路計画と意思決定プロセスを最適化するために、Deep Q Network (DQN) と Proximal Policy Optimization (PPO) モデルを使用します。
様々な複雑なシナリオにおいて,これらのモデルの有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2024-07-02T00:44:06Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
本研究では,複雑な環境下での自律走行のための移動ロボットの訓練における深層強化学習の適用について検討する。
このロボットは、LiDARセンサデータとディープニューラルネットワークを用いて、障害物を回避しつつ、特定の目標に向かって誘導する制御信号を生成する。
論文 参考訳(メタデータ) (2024-05-25T15:08:36Z) - Enhanced Low-Dimensional Sensing Mapless Navigation of Terrestrial
Mobile Robots Using Double Deep Reinforcement Learning Techniques [1.191504645891765]
地上移動ロボットのためのマップレスナビゲーションの強化を目的とした2つのアプローチを提案する。
研究手法は主に、DQN(Deep Q-Network)アルゴリズムに基づくDeep-RL戦略と、DQN(Double Deep Q-Network)アルゴリズムに基づく代替アプローチの比較分析を含む。
提案手法は3つの異なる実環境において評価され、Double Deep構造は単純なQ構造に比べて移動ロボットのナビゲーション能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-10-20T20:47:07Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Deterministic and Stochastic Analysis of Deep Reinforcement Learning for
Low Dimensional Sensing-based Navigation of Mobile Robots [0.41562334038629606]
本稿では,2つのDeep-RL手法-Deep Deterministic Policy Gradients (DDPG)とSoft Actor-Critic (SAC)の比較分析を行う。
本研究の目的は,ニューラルネットワークアーキテクチャが学習そのものにどのように影響するかを示し,各アプローチにおける空中移動ロボットの時間と距離に基づいて定量的な結果を示すことである。
論文 参考訳(メタデータ) (2022-09-13T22:28:26Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
モバイル構築のためのインテリジェントなロボット、環境をナビゲートし、幾何学的設計に従ってその構造を変更するプロセスが必要です。
このタスクでは、ロボットのビジョンと学習の大きな課題は、GPSなしでデザインを正確に達成する方法です。
我々は,手工芸政策の性能を,基礎的なローカライゼーションと計画,最先端の深層強化学習手法を用いて評価した。
論文 参考訳(メタデータ) (2021-03-31T00:05:54Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。