Linear Submodular Maximization with Bandit Feedback
- URL: http://arxiv.org/abs/2407.02601v1
- Date: Tue, 2 Jul 2024 18:40:52 GMT
- Title: Linear Submodular Maximization with Bandit Feedback
- Authors: Wenjing Chen, Victoria G. Crawford,
- Abstract summary: We consider developing approximation algorithms for a submodular objective function $f:2UtomathbbR_geq 0$, where $f=sum_i=1dw_iF_i$.
It is assumed that we have value oracle access to the functions $F_i$, but the coefficients $w_i$ are unknown, and $f$ can only be accessed via noisy queries.
We show that our algorithms make vast improvements in terms of sample efficiency compared to algorithms that do not exploit the linear structure of $f
- Score: 7.926559636438099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Submodular optimization with bandit feedback has recently been studied in a variety of contexts. In a number of real-world applications such as diversified recommender systems and data summarization, the submodular function exhibits additional linear structure. We consider developing approximation algorithms for the maximization of a submodular objective function $f:2^U\to\mathbb{R}_{\geq 0}$, where $f=\sum_{i=1}^dw_iF_{i}$. It is assumed that we have value oracle access to the functions $F_i$, but the coefficients $w_i$ are unknown, and $f$ can only be accessed via noisy queries. We develop algorithms for this setting inspired by adaptive allocation algorithms in the best-arm identification for linear bandit, with approximation guarantees arbitrarily close to the setting where we have value oracle access to $f$. Finally, we empirically demonstrate that our algorithms make vast improvements in terms of sample efficiency compared to algorithms that do not exploit the linear structure of $f$ on instances of move recommendation.
Related papers
- Fair Submodular Cover [18.37610521373708]
We present the study of Fair Submodular Cover (FSC), where given a ground set $U$, a monotone submodular function $f:2UtomathbbR_ge 0$, a threshold $tau$.
We first introduce discrete algorithms for FSC that achieve a bicriteria approximation ratio of $(frac1epsilon, 1-O(epsilon))$.
We then present a continuous algorithm that achieves a $(frac1epsilon, 1-O(epsilon))$-
arXiv Detail & Related papers (2024-07-05T18:37:09Z) - Certified Multi-Fidelity Zeroth-Order Optimization [4.450536872346658]
We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a function $f$ at various approximation levels.
We propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity for any Lipschitz function $f$.
We also prove an $f$-dependent lower bound showing that this algorithm has a near-optimal cost complexity.
arXiv Detail & Related papers (2023-08-02T07:20:37Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Submodular + Concave [53.208470310734825]
It has been well established that first order optimization methods can converge to the maximal objective value of concave functions.
In this work, we initiate the determinant of the smooth functions convex body $$F(x) = G(x) +C(x)$.
This class of functions is an extension of both concave and continuous DR-submodular functions for which no guarantee is known.
arXiv Detail & Related papers (2021-06-09T01:59:55Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - The Power of Subsampling in Submodular Maximization [51.629656762796564]
We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods.
We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.
arXiv Detail & Related papers (2021-04-06T20:25:57Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - Submodular Maximization in Clean Linear Time [42.51873363778082]
We provide the first deterministic algorithm that achieves the tight $1-1/e$ approximation guarantee for submodularimation under a cardinality (size) constraint.
We show that when the cardinality allowed for a solution is constant, no algorithm making a sub-linear number of function evaluations can guarantee any constant ratio.
We extensively evaluate our algorithms on multiple real-life machine learning applications, including movie recommendation, location summarization, twitter text summarization and video summarization.
arXiv Detail & Related papers (2020-06-16T17:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.