Wildfire Autonomous Response and Prediction Using Cellular Automata (WARP-CA)
- URL: http://arxiv.org/abs/2407.02613v1
- Date: Tue, 2 Jul 2024 19:01:59 GMT
- Title: Wildfire Autonomous Response and Prediction Using Cellular Automata (WARP-CA)
- Authors: Abdelrahman Ramadan,
- Abstract summary: WARP-CA model integrates terrain generation using Perlin noise with the dynamism of Cellular Automata (CA) to simulate wildfire spread.
We explore the potential of Multi-Agent Reinforcement Learning to manage wildfires by simulating autonomous agents, such as UAVs and UGVs.
- Score: 0.7252027234425334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wildfires pose a severe challenge to ecosystems and human settlements, exacerbated by climate change and environmental factors. Traditional wildfire modeling, while useful, often fails to adapt to the rapid dynamics of such events. This report introduces the (Wildfire Autonomous Response and Prediction Using Cellular Automata) WARP-CA model, a novel approach that integrates terrain generation using Perlin noise with the dynamism of Cellular Automata (CA) to simulate wildfire spread. We explore the potential of Multi-Agent Reinforcement Learning (MARL) to manage wildfires by simulating autonomous agents, such as UAVs and UGVs, within a collaborative framework. Our methodology combines world simulation techniques and investigates emergent behaviors in MARL, focusing on efficient wildfire suppression and considering critical environmental factors like wind patterns and terrain features.
Related papers
- A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - A comprehensive survey of research towards AI-enabled unmanned aerial
systems in pre-, active-, and post-wildfire management [6.043705525669726]
Wildfires have emerged as one of the most destructive natural disasters worldwide, causing catastrophic losses in both human lives and forest wildlife.
Recently, the use of Artificial Intelligence (AI) in wildfires, propelled by the integration of Unmanned Aerial Vehicles (UAVs) and deep learning models, has created an unprecedented momentum to implement and develop more effective wildfire management.
arXiv Detail & Related papers (2024-01-04T05:09:35Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
Wildfires pose a threat to life, property, ecology, cultural heritage, and critical infrastructure.
SimFire is a versatile wildland fire projection simulator designed to generate realistic wildfire scenarios.
SimHarness is a modular agent-based machine learning wrapper capable of automatically generating land management strategies.
arXiv Detail & Related papers (2023-11-27T15:37:05Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - A generative model for surrogates of spatial-temporal wildfire
nowcasting [13.551652250858144]
A generative model is proposed using a three-dimensional Vector-Quantized Variational Autoencoders.
The model is tested in the ecoregion of a recent massive wildfire event in California, known as the Chimney fire.
Numerical results show that the model succeed in generating coherent and structured fire scenarios.
arXiv Detail & Related papers (2023-08-05T06:54:18Z) - FORFIS: A forest fire firefighting simulation tool for education and
research [90.40304110009733]
We present a forest fire firefighting simulation tool named FORFIS that is implemented in Python.
Our tool is published underv3 license and comes with a GUI as well as additional output functionality.
arXiv Detail & Related papers (2023-05-29T09:14:38Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Mitigating Greenhouse Gas Emissions Through Generative Adversarial
Networks Based Wildfire Prediction [11.484140660635239]
We develop a deep learning based data augmentation approach for wildfire risk prediction.
By adopting the proposed method, we can take preventive strategies of wildfire mitigation to reduce global GHG emissions.
arXiv Detail & Related papers (2021-08-20T00:36:30Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics [0.0]
We evaluate the feasibility of using a Convolutional Long Short-Term Memory recurrent neural network to model the dynamics of wildland fire propagation.
We show that ConvLSTMs can capture local fire transmission events, as well as the overall fire dynamics, such as the rate at which the fire spreads.
arXiv Detail & Related papers (2020-12-11T23:31:43Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.