論文の概要: Generalized Event Cameras
- arxiv url: http://arxiv.org/abs/2407.02683v1
- Date: Tue, 2 Jul 2024 21:48:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:04:33.740661
- Title: Generalized Event Cameras
- Title(参考訳): 汎用イベントカメラ
- Authors: Varun Sundar, Matthew Dutson, Andrei Ardelean, Claudio Bruschini, Edoardo Charbon, Mohit Gupta,
- Abstract要約: イベントカメラは、高解像度かつ最小の帯域幅で世界をキャプチャする。
我々は、帯域幅効率のよいシーン強度を本質的に保持する一般化イベントカメラを設計する。
私たちの単一光子イベントカメラは、低再生速度で高速で高忠実なイメージングを可能にします。
- 参考スコア(独自算出の注目度): 15.730999915036705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event cameras capture the world at high time resolution and with minimal bandwidth requirements. However, event streams, which only encode changes in brightness, do not contain sufficient scene information to support a wide variety of downstream tasks. In this work, we design generalized event cameras that inherently preserve scene intensity in a bandwidth-efficient manner. We generalize event cameras in terms of when an event is generated and what information is transmitted. To implement our designs, we turn to single-photon sensors that provide digital access to individual photon detections; this modality gives us the flexibility to realize a rich space of generalized event cameras. Our single-photon event cameras are capable of high-speed, high-fidelity imaging at low readout rates. Consequently, these event cameras can support plug-and-play downstream inference, without capturing new event datasets or designing specialized event-vision models. As a practical implication, our designs, which involve lightweight and near-sensor-compatible computations, provide a way to use single-photon sensors without exorbitant bandwidth costs.
- Abstract(参考訳): イベントカメラは、高解像度かつ最小の帯域幅で世界をキャプチャする。
しかし、明るさの変化だけをエンコードするイベントストリームには、さまざまなダウンストリームタスクをサポートするのに十分なシーン情報が含まれていない。
本研究では,帯域幅効率のよいシーン強度を本質的に保持する汎用イベントカメラを設計する。
イベントカメラは、イベントがいつ発生し、どの情報が送信されるかという点で一般化する。
我々の設計を実装するために、個々の光子検出にデジタルアクセスを提供する単一光子センサーに目を向ける。
私たちの単一光子イベントカメラは、低再生速度で高速で高忠実なイメージングを可能にします。
その結果、これらのイベントカメラは、新しいイベントデータセットをキャプチャしたり、特別なイベントビジョンモデルを設計することなく、下流でのプラグインとプレイをサポートすることができる。
現実的な意味として、軽量でほぼセンサー互換の計算を含む我々の設計は、帯域幅のコストを犠牲にすることなく、単光子センサーを使用する方法を提供する。
関連論文リスト
- Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions [56.84882059011291]
動き赤外イベントからぼやけた最小のNeRFを再構成する新しい手法であるDeblur e-NeRFを提案する。
また,大きなテクスチャレスパッチの正規化を改善するために,新しいしきい値正規化全変動損失を導入する。
論文 参考訳(メタデータ) (2024-09-26T15:57:20Z) - Gradient events: improved acquisition of visual information in event cameras [0.0]
従来の明るさイベントと同じ特性から恩恵を受ける新しいタイプのイベントである勾配イベントを提案する。
勾配イベントに基づくビデオ再構成は、既存の最先端の輝度イベントベースの手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-09-03T10:18:35Z) - Event Cameras Meet SPADs for High-Speed, Low-Bandwidth Imaging [25.13346470561497]
イベントカメラと単光雪崩ダイオード(SPAD)センサーは、従来のカメラに代わる有望な代替手段として登場した。
これらの特性は相補的であり,低帯域幅で低照度かつ高速な画像再構成を実現するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-04-17T16:06:29Z) - VECtor: A Versatile Event-Centric Benchmark for Multi-Sensor SLAM [31.779462222706346]
イベントカメラは、高ダイナミックな状況や難易度照明の状況において、通常のカメラを補完する強い可能性を秘めている。
私たちのコントリビューションは、マルチセンサーセットアップでキャプチャされたベンチマークデータセットの最初の完全なセットです。
個々のシーケンスには、小規模と大規模の両方の環境が含まれており、ダイナミックビジョンセンサーがターゲットとする特定の課題をカバーする。
論文 参考訳(メタデータ) (2022-07-04T13:37:26Z) - Are High-Resolution Event Cameras Really Needed? [62.70541164894224]
低照度条件や高速環境では、低解像度カメラは高解像度カメラより優れ、帯域幅は大幅に小さくなる。
この主張は,高解像度のイベントカメラが画素当たりのイベントレートが高いことを示す実証的証拠と理論的証拠の両方を提示する。
多くの場合、高解像度のイベントカメラは、これらの条件下では低解像度のセンサーに比べてタスク性能が低い。
論文 参考訳(メタデータ) (2022-03-28T12:06:20Z) - E$^2$(GO)MOTION: Motion Augmented Event Stream for Egocentric Action
Recognition [21.199869051111367]
イベントカメラは「イベント」の形でピクセルレベルの強度変化を捉えます
N-EPIC-Kitchensは、大規模なEPIC-Kitchensデータセットの最初のイベントベースのカメラ拡張である。
イベントデータは、RGBと光フローに匹敵するパフォーマンスを提供するが、デプロイ時に追加のフロー計算を行わないことを示す。
論文 参考訳(メタデータ) (2021-12-07T09:43:08Z) - ESL: Event-based Structured Light [62.77144631509817]
イベントカメラはバイオインスパイアされたセンサーであり、標準的なカメラよりも大きな利点がある。
本稿では,イベントカメラを用いた新しい構造化光システムを提案し,高精度かつ高速な深度センシングの課題に対処する。
論文 参考訳(メタデータ) (2021-11-30T15:47:39Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
イベントカメラはバイオインスパイアされた視覚センサーで、ピクセルごとの明るさの変化を測定する。
これらは、低レイテンシ、高ダイナミックレンジ、高時間分解能、低消費電力など、従来のフレームベースのカメラよりも多くの利点を提供する。
イベントカメラを用いた3次元認識・ナビゲーションアルゴリズムの開発を促進するため,TUM-VIEデータセットを提案する。
論文 参考訳(メタデータ) (2021-08-16T19:53:56Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
複数のセンサからの非同期および不規則なデータを処理するために、リカレント非同期マルチモーダル(RAM)ネットワークを導入する。
従来のRNNにインスパイアされたRAMネットワークは、非同期に更新され、予測を生成するためにいつでもクエリできる隠れ状態を維持している。
平均深度絶対誤差において,最先端手法を最大30%改善することを示す。
論文 参考訳(メタデータ) (2021-02-18T13:24:35Z) - Reducing the Sim-to-Real Gap for Event Cameras [64.89183456212069]
イベントカメラは、非同期でピクセルごとの明るさ変化を報告し、非並列の低レイテンシで「イベント」と呼ばれるパラダイムシフトする新しいセンサーである。
近年の研究では、コンボリューショナルニューラルネットワーク(CNN)を用いて、映像再構成とイベントによる光学的流れを実証している。
既存のビデオ再構成ネットワークの性能を20~40%向上させるイベントベースCNNのトレーニングデータ改善戦略を提案する。
論文 参考訳(メタデータ) (2020-03-20T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。