論文の概要: Supporting Cross-language Cross-project Bug Localization Using Pre-trained Language Models
- arxiv url: http://arxiv.org/abs/2407.02732v1
- Date: Wed, 3 Jul 2024 01:09:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 17:54:48.134781
- Title: Supporting Cross-language Cross-project Bug Localization Using Pre-trained Language Models
- Title(参考訳): 事前学習型言語モデルを用いたクロスランゲージ・プロジェクト・バグ・ローカライゼーション支援
- Authors: Mahinthan Chandramohan, Dai Quoc Nguyen, Padmanabhan Krishnan, Jovan Jancic,
- Abstract要約: 既存のテクニックは、アプリケーション固有のデータに依存しているため、一般化性とデプロイメントに苦労することが多い。
本稿では,プロジェクトと言語の境界を超越したバグローカライゼーションのための,PLMに基づく新しい言語モデルを提案する。
- 参考スコア(独自算出の注目度): 2.5121668584771837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatically locating a bug within a large codebase remains a significant challenge for developers. Existing techniques often struggle with generalizability and deployment due to their reliance on application-specific data and large model sizes. This paper proposes a novel pre-trained language model (PLM) based technique for bug localization that transcends project and language boundaries. Our approach leverages contrastive learning to enhance the representation of bug reports and source code. It then utilizes a novel ranking approach that combines commit messages and code segments. Additionally, we introduce a knowledge distillation technique that reduces model size for practical deployment without compromising performance. This paper presents several key benefits. By incorporating code segment and commit message analysis alongside traditional file-level examination, our technique achieves better bug localization accuracy. Furthermore, our model excels at generalizability - trained on code from various projects and languages, it can effectively identify bugs in unseen codebases. To address computational limitations, we propose a CPU-compatible solution. In essence, proposed work presents a highly effective, generalizable, and efficient bug localization technique with the potential to real-world deployment.
- Abstract(参考訳): 大規模なコードベース内でバグを自動的に特定することは、開発者にとっても大きな課題である。
既存のテクニックは、アプリケーション固有のデータと大きなモデルサイズに依存するため、一般化性とデプロイメントに苦労することが多い。
本稿では,プロジェクトと言語の境界を超越したバグローカライゼーションのための,PLMに基づく新しい言語モデルを提案する。
当社のアプローチでは,コントラスト学習を活用して,バグレポートやソースコードの表現を強化する。
次に、コミットメッセージとコードセグメントを組み合わせた、新しいランキングアプローチを利用する。
さらに,本研究では,実運用において,性能を損なうことなく,モデルサイズを削減できる知識蒸留技術を導入する。
本稿では,いくつかの重要な利点を示す。
コードセグメントとコミットメッセージ分析を従来のファイルレベルの検査と組み合わせることで、より優れたバグローカライズ精度を実現する。
さらに、我々のモデルは汎用性に優れており、様々なプロジェクトや言語のコードに基づいて訓練され、目に見えないコードベースのバグを効果的に特定できます。
計算の限界に対処するため、我々はCPU互換のソリューションを提案する。
基本的に、提案手法は、実世界の展開の可能性のある、非常に効果的で、一般化可能で、効率的なバグローカライゼーション技術である。
関連論文リスト
- Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - BLAZE: Cross-Language and Cross-Project Bug Localization via Dynamic Chunking and Hard Example Learning [1.9854146581797698]
BLAZEは動的チャンキングとハードサンプル学習を採用するアプローチである。
プロジェクト横断と言語横断のバグローカライゼーションを強化するために、難しいバグケースを使用してGPTベースのモデルを微調整する。
BLAZEは、トップ1の精度で120%、平均平均精度(MAP)で144%、平均相互ランク(MRR)で100%上昇する。
論文 参考訳(メタデータ) (2024-07-24T20:44:36Z) - AdaCCD: Adaptive Semantic Contrasts Discovery Based Cross Lingual
Adaptation for Code Clone Detection [69.79627042058048]
AdaCCDは、その言語でアノテーションを使わずに、新しい言語のクローンコードを検出する新しい言語間適応手法である。
5つのプログラミング言語からなる多言語コードクローン検出ベンチマークを構築し,AdaCCDの言語間適応性を評価する。
論文 参考訳(メタデータ) (2023-11-13T12:20:48Z) - Pre-training Code Representation with Semantic Flow Graph for Effective
Bug Localization [4.159296619915587]
セマンティックフローグラフ (Semantic Flow Graph, SFG) という, 有向多ラベル符号グラフの表現法を提案する。
そこで本手法は,バグローカライゼーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-08-24T13:25:17Z) - Too Few Bug Reports? Exploring Data Augmentation for Improved
Changeset-based Bug Localization [7.884766610628946]
本稿では,バグレポートの異なる構成要素に作用する新しいデータ拡張演算子を提案する。
また、拡張バグレポートのコーパス作成を目的としたデータバランス戦略についても述べる。
論文 参考訳(メタデータ) (2023-05-25T19:06:01Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
Google JigsawのAspective APIの次期バージョンの基礎を提示する。
このアプローチの中心は、単一の多言語トークンフリーなCharformerモデルである。
静的な語彙を強制することで、さまざまな設定で柔軟性が得られます。
論文 参考訳(メタデータ) (2022-02-22T20:55:31Z) - Cross-Lingual Adaptation for Type Inference [29.234418962960905]
弱い型付き言語間で深層学習に基づく型推論を行うための言語間適応フレームワークPLATOを提案する。
強く型付けされた言語からのデータを活用することで、PLATOは、バックボーンのクロスプログラミング言語モデルの難易度を改善する。
論文 参考訳(メタデータ) (2021-07-01T00:20:24Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
7つのテスト言語に対する並列データを持たないゼロショット問題として,言語間セマンティックパーシングについて検討した。
英文論理形式ペアデータのみを用いて解析知識を付加言語に転送するマルチタスクエンコーダデコーダモデルを提案する。
このシステムは、ゼロショット解析を潜時空間アライメント問題としてフレーム化し、事前訓練されたモデルを改善し、最小のクロスリンガル転送ペナルティで論理形式を生成することができる。
論文 参考訳(メタデータ) (2021-04-15T16:08:43Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。