論文の概要: Effect of a Process Mining based Pre-processing Step in Prediction of the Critical Health Outcomes
- arxiv url: http://arxiv.org/abs/2407.02821v1
- Date: Wed, 3 Jul 2024 05:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:35:05.833255
- Title: Effect of a Process Mining based Pre-processing Step in Prediction of the Critical Health Outcomes
- Title(参考訳): プロセスマイニングによる重度健康状態予測における前処理ステップの効果
- Authors: Negin Ashrafi, Armin Abdollahi, Greg Placencia, Maryam Pishgar,
- Abstract要約: 我々は、データセットの複雑さを減らし、データ品質を改善するために、既存の前処理アルゴリズムである結合を用いています。
MIMIC IIIとイリノイ大学病院の2つのデータベースから16の医療データセットが抽出された。
事前処理されたイベントログは、決定的な結果を予測するために、Decay Mining (DREAM)アルゴリズムの入力としても使用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting critical health outcomes such as patient mortality and hospital readmission is essential for improving survivability. However, healthcare datasets have many concurrences that create complexities, leading to poor predictions. Consequently, pre-processing the data is crucial to improve its quality. In this study, we use an existing pre-processing algorithm, concatenation, to improve data quality by decreasing the complexity of datasets. Sixteen healthcare datasets were extracted from two databases - MIMIC III and University of Illinois Hospital - converted to the event logs, they were then fed into the concatenation algorithm. The pre-processed event logs were then fed to the Split Miner (SM) algorithm to produce a process model. Process model quality was evaluated before and after concatenation using the following metrics: fitness, precision, F-Measure, and complexity. The pre-processed event logs were also used as inputs to the Decay Replay Mining (DREAM) algorithm to predict critical outcomes. We compared predicted results before and after applying the concatenation algorithm using Area Under the Curve (AUC) and Confidence Intervals (CI). Results indicated that the concatenation algorithm improved the quality of the process models and predictions of the critical health outcomes.
- Abstract(参考訳): 生存可能性を高めるためには、患者の死亡率や入院許可などの重大な健康影響を予測することが不可欠である。
しかし、医療データセットには複雑さを生み出す多くのコンカレンスがあり、予測が不十分になる。
そのため、データの事前処理は品質向上に不可欠である。
本研究では、既存の前処理アルゴリズムである結合を用いて、データセットの複雑さを減らし、データ品質を改善する。
医療データセットは、MIMIC IIIとイリノイ大学病院の2つのデータベースから抽出され、イベントログに変換され、結合アルゴリズムに入力された。
プリプロセスされたイベントログは、プロセスモデルを生成するためにSplit Miner (SM)アルゴリズムに送信される。
プロセスモデルの品質は, 適合度, 精度, F-Measure, 複雑さといった指標を用いて, 結合前後で評価した。
事前処理されたイベントログは、決定的な結果を予測するために、Decay Replay Mining (DREAM)アルゴリズムの入力としても使用された。
本研究では,AUC(Area Under the Curve)とCI(Confidence Intervals)を用いた連結アルゴリズムの適用前後の予測結果を比較した。
その結果, 連結アルゴリズムはプロセスモデルの品質を向上し, 重要な健康結果の予測を行うことができた。
関連論文リスト
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
この研究では、分類データセットのギャップを埋めるための機械学習アルゴリズムの使用について検討した。
Error Correction Output Codesフレームワークを使用して構築されたアンサンブルモデルに重点が置かれた。
大量のラベル付きデータの要求を含む、これらの奨励的な結果にもかかわらず、データ計算の欠如に対する深い学習には障害がある。
論文 参考訳(メタデータ) (2023-06-10T03:29:48Z) - Improved clinical data imputation via classical and quantum
determinantal point processes [1.3749490831384268]
データの警告は、機械学習の実践者にとって重要な問題である。
本稿では,決定点過程に基づく新しい計算法を提案する。
小型計算タスクに対して最大10キュービットの競合結果を示す。
論文 参考訳(メタデータ) (2023-03-31T08:54:46Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
疲労損傷を予測するための最大エントロピーの原理に基づくML近傍近似アルゴリズムを開発した。
予測は、他のMLアルゴリズムと同様、高いレベルの精度を達成する。
論文 参考訳(メタデータ) (2022-10-19T12:20:07Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Analysis of lifelog data using optimal feature selection based
unsupervised logistic regression (OFS-ULR) for chronic disease classification [2.3909933791900326]
慢性疾患分類モデルは現在、より良い医療実践を探求するためにライフログデータの可能性を活用している。
本稿では,慢性疾患の分類に最適な特徴選択に基づく非教師なしロジスティック回帰モデル(OFS-ULR)を構築することを目的とする。
論文 参考訳(メタデータ) (2022-04-04T07:11:26Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC)は、科学応用においてエミュレータを設計するための新しいディープラーニングアプローチである。
また,LbCは広く適応された損失関数の選択に対して,一般化誤差を大幅に改善することを示した。
LbCは、小さなデータレギュレータでも高品質なエミュレータを実現し、さらに重要なことは、明確な事前条件なしで固有のノイズ構造を復元する。
論文 参考訳(メタデータ) (2020-05-05T16:54:11Z) - Improving a State-of-the-Art Heuristic for the Minimum Latency Problem
with Data Mining [69.00394670035747]
ハイブリッドメタヒューリスティックスは、オペレーション研究のトレンドとなっている。
成功例は、Greedy Randomized Adaptive Search Procedures (GRASP)とデータマイニング技術を組み合わせたものだ。
論文 参考訳(メタデータ) (2019-08-28T13:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。