論文の概要: Quantum Serverless Paradigm and Application Development using the QFaaS Framework
- arxiv url: http://arxiv.org/abs/2407.02828v1
- Date: Wed, 3 Jul 2024 06:12:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:25:09.631813
- Title: Quantum Serverless Paradigm and Application Development using the QFaaS Framework
- Title(参考訳): QFaaSフレームワークを用いた量子サーバレスパラダイムとアプリケーション開発
- Authors: Hoa T. Nguyen, Bui Binh An Pham, Muhammad Usman, Rajkumar Buyya,
- Abstract要約: この章では、QFを使った例を使って、サーバレス量子コンピューティングの概念を紹介します。
このフレームワークは、サーバーレスコンピューティングモデルを使用して、量子アプリケーションの開発とデプロイを単純化する。
この章では、QFのデプロイと使用に関する包括的なドキュメンテーションとガイドラインが提供されている。
- 参考スコア(独自算出の注目度): 17.398771276317575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has the potential to solve complex problems beyond the capabilities of classical computers. However, its practical use is currently limited due to early-stage quantum software engineering and the constraints of Noisy Intermediate-Scale Quantum (NISQ) devices. To address this issue, this chapter introduces the concept of serverless quantum computing with examples using QFaaS, a practical Quantum Function-as-a-Service framework. This framework utilizes the serverless computing model to simplify quantum application development and deployment by abstracting the complexities of quantum hardware and enhancing application portability across different quantum software development kits and quantum backends. The chapter provides comprehensive documentation and guidelines for deploying and using QFaaS, detailing the setup, component deployment, and examples of service-oriented quantum applications. This framework offers a promising approach to overcoming current limitations and advancing the practical software engineering of quantum computing.
- Abstract(参考訳): 量子コンピューティングは、古典的なコンピュータの能力を超えた複雑な問題を解決する可能性がある。
しかし、初期量子ソフトウェア工学とノイズ中間スケール量子(NISQ)デバイスの制約により、その実用性は制限されている。
この問題に対処するため、この章では、実用的な量子関数・アズ・ア・サービスフレームワークであるQFaaSを使って、サーバレス量子コンピューティングの概念を紹介します。
このフレームワークは、サーバーレスコンピューティングモデルを使用して、量子ハードウェアの複雑さを抽象化し、さまざまな量子ソフトウェア開発キットと量子バックエンドにわたるアプリケーションのポータビリティを向上させることで、量子アプリケーション開発とデプロイメントを単純化する。
この章では、QFaaSのデプロイと使用に関する包括的なドキュメンテーションとガイドライン、セットアップ、コンポーネントのデプロイ、サービス指向量子アプリケーションの例が紹介されている。
このフレームワークは、現在の制限を克服し、量子コンピューティングの実用的なソフトウェアエンジニアリングを前進させる、有望なアプローチを提供する。
関連論文リスト
- Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
本稿では,Quantum Software Develop-mentライフサイクルのビジョンを紹介する。
量子コンピューティングと古典コンピューティングを統合するハイブリッドフルスタック反復モデルを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:18:33Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QPanda: high-performance quantum computing framework for multiple
application scenarios [15.954489124674394]
本稿では,高性能シミュレーションを用いたシナリオ指向量子プログラミングフレームワークQPandaを提案する。
量子回路の高速シミュレーション、量子コンピュータとスーパーコンピュータの融合処理バックエンドの構成、NISQマシンのための量子プログラムのコンパイルと最適化方法を実装している。
論文 参考訳(メタデータ) (2022-12-29T07:38:50Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
大規模量子アプリケーションに必要なリソースを推定するために,スタックの層を抽象化し,量子リソース推定のためのフレームワークを開発する。
3つのスケールされた量子アプリケーションを評価し、実用的な量子優位性を達成するために数十万から数百万の物理量子ビットが必要であることを発見した。
私たちの研究の目標は、より広範なコミュニティがスタック全体の設計選択を探索できるようにすることで、実用的な量子的優位性に向けた進歩を加速することにあります。
論文 参考訳(メタデータ) (2022-11-14T18:50:27Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - QFaaS: A Serverless Function-as-a-Service Framework for Quantum
Computing [22.068803245816266]
本稿では,量子コンピューティングを進化させるためのQuantum Function-as-a-Serviceフレームワークを提案する。
私たちのフレームワークは、ソフトウェア開発を簡素化し、量子クラウドコンピューティングパラダイムに適応するために、量子サーバーレスプラットフォームの不可欠なコンポーネントを提供します。
本稿では,アーキテクチャ設計,主成分,ハイブリッド量子古典関数のライフサイクル,運用ワークフロー,QFの実装について述べる。
論文 参考訳(メタデータ) (2022-05-30T04:18:53Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
現在のフルスタック量子コンピューティングシステムの概要について概説する。
我々は、隣接する層間の密な共設計と垂直な層間設計の必要性を強調します。
論文 参考訳(メタデータ) (2022-04-13T13:26:56Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - QSOC: Quantum Service-Oriented Computing [3.2786644738211725]
本稿ではQSOC(Quantum Service-Oriented Computing)を紹介する。
これには、エンタープライズDevOpsチームが、基礎となる量子インフラストラクチャに関する深い知識を必要とせずに、エンタープライズアプリケーションを構成、構成、運用できるようにする、モデル駆動の方法論が含まれている。
知識の再利用、関心の分離、資源最適化、および混合量子および従来のQSOC応用を提唱している。
論文 参考訳(メタデータ) (2021-05-04T09:05:10Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。