論文の概要: Benchmarking fault-tolerant quantum computing hardware via QLOPS
- arxiv url: http://arxiv.org/abs/2507.12024v1
- Date: Wed, 16 Jul 2025 08:31:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.307442
- Title: Benchmarking fault-tolerant quantum computing hardware via QLOPS
- Title(参考訳): QLOPSによるフォールトトレラント量子コンピューティングハードウェアのベンチマーク
- Authors: Linghang Kong, Fang Zhang, Jianxin Chen,
- Abstract要約: 量子アルゴリズムを実行するためには、低ノイズレベルでスケーラブルな量子ハードウェアを開発することが不可欠である。
様々なハードウェアプラットフォーム向けに、フォールトトレラントな量子コンピューティングスキームが開発されている。
本稿では,FTQC方式の性能評価指標として,QLOPS(Quantum Logical Operations Per Second)を提案する。
- 参考スコア(独自算出の注目度): 2.0464713282534848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is widely recognized that quantum computing has profound impacts on multiple fields, including but not limited to cryptography, machine learning, materials science, etc. To run quantum algorithms, it is essential to develop scalable quantum hardware with low noise levels and to design efficient fault-tolerant quantum computing (FTQC) schemes. Currently, various FTQC schemes have been developed for different hardware platforms. However, a comprehensive framework for the analysis and evaluation of these schemes is still lacking. In this work, we propose Quantum Logical Operations Per Second (QLOPS) as a metric for assessing the performance of FTQC schemes on quantum hardware platforms. This benchmarking framework will integrate essential relevant factors, e.g., the code rates of quantum error-correcting codes, the accuracy, throughput, and latency of the decoder, and reflect the practical requirements of quantum algorithm execution. This framework will enable the identification of bottlenecks in quantum hardware, providing potential directions for their development. Moreover, our results will help establish a comparative framework for evaluating FTQC designs. As this benchmarking approach considers practical applications, it may assist in estimating the hardware resources needed to implement quantum algorithms and offers preliminary insights into potential timelines.
- Abstract(参考訳): 量子コンピューティングは、暗号、機械学習、材料科学など、複数の分野に大きな影響を与えていると広く認識されている。
量子アルゴリズムを実行するためには、低ノイズレベルでスケーラブルな量子ハードウェアを開発し、効率的なフォールトトレラント量子コンピューティング(FTQC)を設計することが不可欠である。
現在、様々なハードウェアプラットフォーム向けに様々なFTQCスキームが開発されている。
しかし、これらのスキームの分析と評価のための包括的な枠組みはいまだに欠落している。
本研究では,量子ハードウェアプラットフォーム上でのFTQCスキームの性能を評価する指標として,QLOPS(Quantum Logical Operations Per Second)を提案する。
このベンチマークフレームワークは、例えば、量子エラー訂正コードのコードレート、デコーダの正確性、スループット、レイテンシといった重要な要素を統合し、量子アルゴリズム実行の実践的な要件を反映する。
このフレームワークは量子ハードウェアにおけるボトルネックの特定を可能にし、その開発の潜在的な方向性を提供する。
さらに,本研究はFTQC設計を評価するための比較フレームワークの確立に寄与する。
このベンチマークアプローチは実用的応用を検討するため、量子アルゴリズムの実装に必要なハードウェアリソースの推定を支援し、潜在的なタイムラインに関する予備的な洞察を提供する。
関連論文リスト
- Advances in Machine Learning: Where Can Quantum Techniques Help? [0.0]
量子機械学習(QML)は、量子コンピューティングと人工知能の交差点における有望なフロンティアである。
本稿では,従来の機械学習の計算ボトルネックに対処するQMLの可能性について検討する。
論文 参考訳(メタデータ) (2025-07-11T07:47:47Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - An Accurate and Efficient Analytic Model of Fidelity Under Depolarizing Noise Oriented to Large Scale Quantum System Design [1.80755313284025]
本稿では,分極雑音下での量子回路の忠実度を予測するための包括的な理論的枠組みを提案する。
デバイスキャリブレーションデータに基づく効率的な忠実度推定アルゴリズムを提案する。
提案するアプローチは、量子ハードウェアをベンチマークするためのスケーラブルで実用的なツールを提供する。
論文 参考訳(メタデータ) (2025-03-09T16:59:24Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
本稿では,従来の手法に比べてレイテンシの低い量子同値チェック手法QuBECを提案する。
提案手法は,ベンチマーク回路の検証時間を最大271.49倍に短縮する。
論文 参考訳(メタデータ) (2023-09-19T16:12:37Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
大規模量子アプリケーションに必要なリソースを推定するために,スタックの層を抽象化し,量子リソース推定のためのフレームワークを開発する。
3つのスケールされた量子アプリケーションを評価し、実用的な量子優位性を達成するために数十万から数百万の物理量子ビットが必要であることを発見した。
私たちの研究の目標は、より広範なコミュニティがスタック全体の設計選択を探索できるようにすることで、実用的な量子的優位性に向けた進歩を加速することにあります。
論文 参考訳(メタデータ) (2022-11-14T18:50:27Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Volume for Photonic Quantum Processors [15.3862808585761]
短期量子コンピューティングプロセッサのメトリクスを定義することは、量子ハードウェアの研究と開発に不可欠である。
ランダム化ベンチマークや量子ボリュームのようなほとんどのメトリクスは、もともと回路ベースの量子コンピュータに導入された。
本稿では,MBQCプロセスの物理ノイズと不完全性を等価量子回路の論理誤差にマッピングする枠組みを提案する。
論文 参考訳(メタデータ) (2022-08-24T18:05:16Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
現在のフルスタック量子コンピューティングシステムの概要について概説する。
我々は、隣接する層間の密な共設計と垂直な層間設計の必要性を強調します。
論文 参考訳(メタデータ) (2022-04-13T13:26:56Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。