CoIR: A Comprehensive Benchmark for Code Information Retrieval Models
- URL: http://arxiv.org/abs/2407.02883v1
- Date: Wed, 3 Jul 2024 07:58:20 GMT
- Title: CoIR: A Comprehensive Benchmark for Code Information Retrieval Models
- Authors: Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Yichun Yin, Hao Zhang, Yong Liu, Yasheng Wang, Ruiming Tang,
- Abstract summary: We present textbfname (textbfInformation textbfRetrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities.
name comprises textbften meticulously curated code datasets, spanning textbfeight distinctive retrieval tasks across textbfseven diverse domains.
We evaluate nine widely used retrieval models using name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems.
- Score: 56.691926887209895
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present \textbf{\name} (\textbf{Co}de \textbf{I}nformation \textbf{R}etrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. \name comprises \textbf{ten} meticulously curated code datasets, spanning \textbf{eight} distinctive retrieval tasks across \textbf{seven} diverse domains. We first discuss the construction of \name and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using \name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, \name has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through \name, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems\footnote{\url{ https://github.com/CoIR-team/coir}}.
Related papers
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
Information retrieval is a critical component for many down-stream tasks such as open-domain question answering (QA)
We propose an information retrieval pipeline that uses entity/event linking model and query decomposition model to focus more accurately on different information units of the query.
We show that, while being more interpretable and reliable, our proposed pipeline significantly improves passage coverages and denotation accuracies across five IR and QA benchmarks.
arXiv Detail & Related papers (2023-08-09T07:47:17Z) - Semi-Structured Query Grounding for Document-Oriented Databases with
Deep Retrieval and Its Application to Receipt and POI Matching [23.52046767195031]
We aim to address practical challenges when using embedding-based retrieval for the query grounding problem in semi-structured data.
We conduct extensive experiments to find the most effective combination of modules for the embedding and retrieval of both query and database entries.
The proposed model significantly outperforms the conventional manual pattern-based model while requiring much less development and maintenance cost.
arXiv Detail & Related papers (2022-02-23T05:32:34Z) - Deep Graph Matching and Searching for Semantic Code Retrieval [76.51445515611469]
We propose an end-to-end deep graph matching and searching model based on graph neural networks.
We first represent both natural language query texts and programming language code snippets with the unified graph-structured data.
In particular, DGMS not only captures more structural information for individual query texts or code snippets but also learns the fine-grained similarity between them.
arXiv Detail & Related papers (2020-10-24T14:16:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.