LLM Agents Improve Semantic Code Search
- URL: http://arxiv.org/abs/2408.11058v1
- Date: Mon, 5 Aug 2024 00:43:56 GMT
- Title: LLM Agents Improve Semantic Code Search
- Authors: Sarthak Jain, Aditya Dora, Ka Seng Sam, Prabhat Singh,
- Abstract summary: We introduce the approach of using Retrieval Augmented Generation powered agents to inject information into user prompts.
By utilizing RAG, agents enhance user queries with relevant details from GitHub repositories, making them more informative and contextually aligned.
Experimental results on the CodeSearchNet dataset demonstrate that RepoRift significantly outperforms existing methods.
- Score: 6.047454623201181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code Search is a key task that many programmers often have to perform while developing solutions to problems. Current methodologies suffer from an inability to perform accurately on prompts that contain some ambiguity or ones that require additional context relative to a code-base. We introduce the approach of using Retrieval Augmented Generation (RAG) powered agents to inject information into user prompts allowing for better inputs into embedding models. By utilizing RAG, agents enhance user queries with relevant details from GitHub repositories, making them more informative and contextually aligned. Additionally, we introduce a multi-stream ensemble approach which when paired with agentic workflow can obtain improved retrieval accuracy, which we deploy on application called repo-rift.com. Experimental results on the CodeSearchNet dataset demonstrate that RepoRift significantly outperforms existing methods, achieving an 78.2% success rate at Success@10 and a 34.6% success rate at Success@1. This research presents a substantial advancement in semantic code search, highlighting the potential of agentic LLMs and RAG to enhance code retrieval systems.
Related papers
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
Large language models (LLMs) can act as agents with capabilities to self-refine and improve generated code autonomously.
We propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions.
arXiv Detail & Related papers (2024-11-07T00:09:54Z) - Instructive Code Retriever: Learn from Large Language Model's Feedback for Code Intelligence Tasks [10.867880635762395]
We introduce a novel approach named Instructive Code Retriever (ICR)
ICR is designed to retrieve examples that enhance model inference across various code intelligence tasks and datasets.
We evaluate our model's effectiveness on various tasks, i.e., code summarization, program synthesis, and bug fixing.
arXiv Detail & Related papers (2024-10-15T05:44:00Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
Large Language Models (LLMs) have shown incredible potential in code generation tasks.
LLMs can generate code based on task descriptions, but accuracy remains limited.
We introduce a novel architecture of LLM-based agents for code generation and automatic debug: Refinement and Guidance debugger (RGD)
RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback.
arXiv Detail & Related papers (2024-10-02T05:07:02Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuest is a framework where benchmarks and metrics are modular and easily through well documented and easy-to-use APIs.
We offer two new evaluation metrics that can reliably track LLM agent progress while solving a task.
We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase.
arXiv Detail & Related papers (2024-04-09T16:01:24Z) - REPOFUSE: Repository-Level Code Completion with Fused Dual Context [11.531678717514724]
This paper introduces REPOFUSE, a pioneering solution designed to enhance repository-level code completion without the latency trade-off.
We propose a novel rank truncated generation (RTG) technique that efficiently condenses two types of context into prompts with restricted size.
REPOFUSE has demonstrated a significant leap over existing models, achieving a 40.90% to 59.75% increase in exact match (EM) accuracy for code completions and a 26.8% enhancement in inference speed.
arXiv Detail & Related papers (2024-02-22T06:34:50Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - A Review of Repository Level Prompting for LLMs [0.0]
Large Language Models (LLMs) have led to notable successes, such as achieving a 94.6% solve rate on the HumanEval benchmark.
There is an increasing commercial push for repository-level inline code completion tools, such as GitHub Copilot and Tab Nine.
This paper delves into the transition from individual coding problems to repository-scale solutions.
arXiv Detail & Related papers (2023-12-15T00:34:52Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.