Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation
- URL: http://arxiv.org/abs/2407.02894v1
- Date: Wed, 3 Jul 2024 08:15:39 GMT
- Title: Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation
- Authors: Zhibin Lan, Liqiang Niu, Fandong Meng, Jie Zhou, Min Zhang, Jinsong Su,
- Abstract summary: In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language.
In this paper, we propose an end-to-end IIMT model consisting of four modules.
Our model achieves competitive performance compared to cascaded models with only 70.9% of parameters, and significantly outperforms the pixel-level end-to-end IIMT model.
- Score: 81.45400849638347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language. In this regard, conventional cascaded methods suffer from issues such as error propagation, massive parameters, and difficulties in deployment and retaining visual characteristics of the input image. Thus, constructing end-to-end models has become an option, which, however, faces two main challenges: 1) the huge modeling burden, as it is required to simultaneously learn alignment across languages and preserve the visual characteristics of the input image; 2) the difficulties of directly predicting excessively lengthy pixel sequences. In this paper, we propose \textit{Translatotron-V(ision)}, an end-to-end IIMT model consisting of four modules. In addition to an image encoder, and an image decoder, our model contains a target text decoder and an image tokenizer. Among them, the target text decoder is used to alleviate the language alignment burden, and the image tokenizer converts long sequences of pixels into shorter sequences of visual tokens, preventing the model from focusing on low-level visual features. Besides, we present a two-stage training framework for our model to assist the model in learning alignment across modalities and languages. Finally, we propose a location-aware evaluation metric called Structure-BLEU to assess the translation quality of the generated images. Experimental results demonstrate that our model achieves competitive performance compared to cascaded models with only 70.9\% of parameters, and significantly outperforms the pixel-level end-to-end IIMT model.
Related papers
- FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - Fine-tuning CLIP Text Encoders with Two-step Paraphrasing [83.3736789315201]
We introduce a straightforward fine-tuning approach to enhance the representations of CLIP models for paraphrases.
Our model, which we call ParaCLIP, exhibits significant improvements over baseline CLIP models across various tasks.
arXiv Detail & Related papers (2024-02-23T06:11:50Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level.
We propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE)
BTMAE learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level.
arXiv Detail & Related papers (2023-11-29T07:33:38Z) - Mug-STAN: Adapting Image-Language Pretrained Models for General Video
Understanding [47.97650346560239]
We propose Spatial-Temporal Auxiliary Network with Mutual-guided alignment module (Mug-STAN) to extend image-text model to diverse video tasks and video-text data.
Mug-STAN significantly improves adaptation of language-image pretrained models such as CLIP and CoCa at both video-text post-pretraining and finetuning stages.
arXiv Detail & Related papers (2023-11-25T17:01:38Z) - Text Rendering Strategies for Pixel Language Models [21.36370101063954]
In this paper, we investigate four approaches to rendering text in the PIXEL model.
We find that simple character bigram rendering brings improved performance on sentence-level tasks without compromising performance on token-level or multilingual tasks.
Our analyses show that character bigram rendering leads to a consistently better model but with an anisotropic patch embedding space, driven by a patch frequency bias.
arXiv Detail & Related papers (2023-11-01T13:49:31Z) - Generating Images with Multimodal Language Models [78.6660334861137]
We propose a method to fuse frozen text-only large language models with pre-trained image encoder and decoder models.
Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue.
arXiv Detail & Related papers (2023-05-26T19:22:03Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Parti treats text-to-image generation as a sequence-to-sequence modeling problem.
Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens.
PartiPrompts (P2) is a new holistic benchmark of over 1600 English prompts.
arXiv Detail & Related papers (2022-06-22T01:11:29Z) - TIME: Text and Image Mutual-Translation Adversarial Networks [55.1298552773457]
We propose Text and Image Mutual-Translation Adversarial Networks (TIME)
TIME learns a T2I generator G and an image captioning discriminator D under the Generative Adversarial Network framework.
In experiments, TIME achieves state-of-the-art (SOTA) performance on the CUB and MS-COCO dataset.
arXiv Detail & Related papers (2020-05-27T06:40:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.