論文の概要: Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization
- arxiv url: http://arxiv.org/abs/2407.02900v1
- Date: Wed, 3 Jul 2024 08:20:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:05:39.432320
- Title: Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization
- Title(参考訳): 自己教師型視覚変換器はドメイン一般化のためのスケーラブルな生成モデルである
- Authors: Sebastian Doerrich, Francesco Di Salvo, Christian Ledig,
- Abstract要約: 病理組織像における領域一般化のための新しい生成法を提案する。
本手法では,画像パッチの特徴を動的に抽出するために,生成型自己教師型視覚変換器を用いる。
2つの異なる病理組織学的データセットを用いて行った実験は,提案手法の有効性を示した。
- 参考スコア(独自算出の注目度): 0.13108652488669734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite notable advancements, the integration of deep learning (DL) techniques into impactful clinical applications, particularly in the realm of digital histopathology, has been hindered by challenges associated with achieving robust generalization across diverse imaging domains and characteristics. Traditional mitigation strategies in this field such as data augmentation and stain color normalization have proven insufficient in addressing this limitation, necessitating the exploration of alternative methodologies. To this end, we propose a novel generative method for domain generalization in histopathology images. Our method employs a generative, self-supervised Vision Transformer to dynamically extract characteristics of image patches and seamlessly infuse them into the original images, thereby creating novel, synthetic images with diverse attributes. By enriching the dataset with such synthesized images, we aim to enhance its holistic nature, facilitating improved generalization of DL models to unseen domains. Extensive experiments conducted on two distinct histopathology datasets demonstrate the effectiveness of our proposed approach, outperforming the state of the art substantially, on the Camelyon17-wilds challenge dataset (+2%) and on a second epithelium-stroma dataset (+26%). Furthermore, we emphasize our method's ability to readily scale with increasingly available unlabeled data samples and more complex, higher parametric architectures. Source code is available at https://github.com/sdoerrich97/vits-are-generative-models .
- Abstract(参考訳): 特にデジタル病理学の領域における深層学習(DL)技術の統合は、顕著な進歩にもかかわらず、多様な画像領域や特徴をまたいだ堅牢な一般化の実現に関わる課題によって妨げられている。
データ強化や染色色正規化など、この分野における従来の緩和戦略は、この制限に対処するには不十分であることが証明されており、代替手法の探索が必要である。
そこで本研究では,病理組織像における領域一般化のための新しい生成法を提案する。
画像パッチの特徴を動的に抽出し,それらを原画像にシームレスに注入することにより,多様な属性を持つ新規な合成画像を生成する。
このような合成画像でデータセットを豊かにすることにより、その全体性を高め、DLモデルの未確認領域への一般化を促進することを目指している。
2つの異なる病理組織学的データセットで実施された広範囲な実験は、カメリオン17-wildsチャレンジデータセット(+2%)と第2エピテリウムストローマデータセット(+26%)において、提案手法の有効性を著しく上回った。
さらに,利用可能なラベルのないデータサンプルと,より複雑で高いパラメトリックアーキテクチャで容易にスケールできることを強調した。
ソースコードはhttps://github.com/sdoerrich97/vits-are-generative-modelsで入手できる。
関連論文リスト
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
病理組織像分類は様々な疾患の正確な同定と診断に重要である。
合成画像は、既存のデータセットを効果的に増強し、最終的に下流の病理組織像分類タスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-09-24T12:02:55Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - Generalizing Across Domains in Diabetic Retinopathy via Variational
Autoencoders [0.0]
糖尿病網膜症分類のための領域一般化は、モデルが網膜画像の適切な分類を可能にする。
本研究では, 変分オートエンコーダの固有容量を考察し, 基礎画像の潜伏空間を乱す方法について検討した。
論文 参考訳(メタデータ) (2023-09-20T13:29:22Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
高品質な病理画像合成のための視覚変換器(ViT)と拡散オートエンコーダを統合したViT-DAEを提案する。
提案手法は, 実写画像生成におけるGAN法とバニラDAE法より優れている。
論文 参考訳(メタデータ) (2023-04-03T15:00:06Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
本稿では,データ生成とモデルトレーニングの段階を統一プロセスに統合する,革新的な統一フレームワークを提案する。
提案手法では、画像合成と分類の両方を同時に扱うために、純粋視覚変換器(ViT)ベースの条件付き生成適応ネットワーク(cGAN)モデルを用いる。
本実験により,我々の統合合成増強フレームワークは,病理組織像分類モデルの性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2022-12-20T03:40:44Z) - Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets [0.0]
病理組織学的データセットGAN(HDGAN)は、画像の生成と分割のためのフレームワークであり、大きな解像度の病理組織像によく対応している。
生成したバックボーンの更新,ジェネレータからの遅延特徴の選択的抽出,メモリマップされた配列への切り替えなど,オリジナルのフレームワークからいくつかの適応を行う。
血栓性微小血管症における高分解能タイルデータセット上でHDGANを評価し,高分解能画像アノテーション生成タスクにおいて高い性能を示した。
論文 参考訳(メタデータ) (2022-07-06T14:33:50Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。