論文の概要: Domain-independent detection of known anomalies
- arxiv url: http://arxiv.org/abs/2407.02910v1
- Date: Wed, 3 Jul 2024 08:35:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:05:39.420801
- Title: Domain-independent detection of known anomalies
- Title(参考訳): 既知の異常のドメイン非依存的検出
- Authors: Jonas Bühler, Jonas Fehrenbach, Lucas Steinmann, Christian Nauck, Marios Koulakis,
- Abstract要約: 異常検出アプローチは、スパースな名目データで訓練することができるが、ドメインの一般化アプローチは、以前は目に見えないドメイン内のオブジェクトを検出することができる。
3つの新しいデータセットを生成することにより、確立されたMVTec ADデータセットを改良する。
SEMLPは、平均画像レベルのAUROCが87.2%であるのに対して、MIROは80.4%である。
- 参考スコア(独自算出の注目度): 1.3232004853011963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.
- Abstract(参考訳): 工業品質検査における永続的な障害の1つは異常の検出である。
現実のユースケースでは、2つの問題に対処する必要がある: 異常データはスパースであり、同じ種類の異常を以前に見つからなかったオブジェクトで検出する必要がある。
現在の異常検出アプローチはスパースな名目データで訓練できるが、ドメインの一般化アプローチは、これまで見つからなかった領域のオブジェクトの検出を可能にする。
これら2つの観測を利用して、スパースクラスにおける領域一般化のハイブリッドタスクを導入する。
このタスクに付随するデータセットを導入するために、3つの新しいデータセットを生成することにより、確立されたMVTec ADデータセットの修正を提案する。
既存のベンチマーク手法の適用に加えて,組込み型アプローチであるSpatial Embedding MLP (SEMLP) と Labeled PatchCore を設計した。
SEMLPは、平均画像レベルのAUROCが87.2%であるのに対して、MIROは80.4%である。
新たに公開され、利用可能なデータセットにより、さらなる研究が産業的異常検出を改善することができる。
関連論文リスト
- FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data [1.0650780147044159]
ラベルなしおよび潜在的に汚染されたトレーニングデータを用いた完全教師なし異常検出のための新しい学習ベースアプローチを提案する。
本手法は, 2つの観測結果から, 正常試料間の対特徴距離が, 異常試料や異種試料間の対特徴距離よりも平均的に小さい可能性が示唆され, 互いに近接する2つの特徴対が等質な対である可能性が示唆された。
本研究は, 近接する近傍距離が信頼度の高いサンプルと異常を区別できることを示す最初の観測結果に基づいて, 反復的に再構成されたメモリバンクを用いた擬似ラベル方式を提案する。
論文 参考訳(メタデータ) (2024-11-25T05:51:38Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
メモリ拡張(Memory Augmentation)と擬似ラベル(Pseudo-Labeling, MAPL)と呼ばれる, 産業環境における表面欠陥検出のための新しいメソドロジーを導入する。
この手法は、まず異常シミュレーション戦略を導入し、希少または未知の異常型を認識するモデルの能力を著しく改善する。
入力データから直接異常領域を識別するために、MAPLによってエンドツーエンドの学習フレームワークが使用される。
論文 参考訳(メタデータ) (2024-05-10T02:26:35Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
ほとんどの深層異常検出モデルは、データセットから正規性を学ぶことに基づいている。
実際、正規性仮定は実データ分布の性質によってしばしば破られる。
このギャップを減らし、より優れた正規性表現を実現するための学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T02:36:19Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - RoSAS: Deep Semi-Supervised Anomaly Detection with
Contamination-Resilient Continuous Supervision [21.393509817509464]
本稿では, テクスト汚染耐性連続監視信号を考案した, 半教師付き異常検出手法を提案する。
当社のアプローチは、AUC-PRにおいて最先端の競合他社を20%-30%上回っている。
論文 参考訳(メタデータ) (2023-07-25T04:04:49Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。