論文の概要: The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection
- arxiv url: http://arxiv.org/abs/2503.21622v1
- Date: Thu, 27 Mar 2025 15:41:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:24.473868
- Title: The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection
- Title(参考訳): MVTec AD 2データセット: 教師なし異常検出のための高度なシナリオ
- Authors: Lars Heckler-Kram, Jan-Hendrik Neudeck, Ulla Scheler, Rebecca König, Carsten Steger,
- Abstract要約: 8000以上の高解像度画像を含む8つの異常検出シナリオの集合であるMVTec AD 2を提案する。
従来のデータセットでは考慮されていない、挑戦的で、非常に関係の深い産業検査のユースケースを含んでいる。
我々のデータセットは、実世界の分散シフト下でのメソッドのロバスト性を評価するために、照明条件の変更を伴うテストシナリオを提供する。
- 参考スコア(独自算出の注目度): 3.9682699334026563
- License:
- Abstract: In recent years, performance on existing anomaly detection benchmarks like MVTec AD and VisA has started to saturate in terms of segmentation AU-PRO, with state-of-the-art models often competing in the range of less than one percentage point. This lack of discriminatory power prevents a meaningful comparison of models and thus hinders progress of the field, especially when considering the inherent stochastic nature of machine learning results. We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images. It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets, including transparent and overlapping objects, dark-field and back light illumination, objects with high variance in the normal data, and extremely small defects. We provide comprehensive evaluations of state-of-the-art methods and show that their performance remains below 60% average AU-PRO. Additionally, our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts. We host a publicly accessible evaluation server that holds the pixel-precise ground truth of the test set (https://benchmark.mvtec.com/). All image data is available at https://www.mvtec.com/company/research/datasets/mvtec-ad-2.
- Abstract(参考訳): 近年、MVTec AD や VisA のような既存の異常検出ベンチマークのパフォーマンスは、セグメント化 AU-PRO の観点で飽和し始めており、最先端のモデルはしばしば1パーセント未満の範囲で競合している。
この識別力の欠如は、モデルの有意義な比較を妨げ、特に機械学習結果の固有の確率的性質を考慮すると、フィールドの進行を妨げる。
8000以上の高解像度画像を含む8つの異常検出シナリオの集合であるMVTec AD 2を提案する。
従来のデータセットでは、透明で重なり合うオブジェクト、暗視野およびバックライトの照明、通常のデータに高いばらつきのあるオブジェクト、非常に小さな欠陥など、困難で関連性の高い産業検査のユースケースで構成されている。
本研究では,最先端手法の総合評価を行い,その性能が平均60%以下であることを示す。
さらに,本データセットは,実世界の分散シフト下での手法の堅牢性を評価するために,照明条件の変更を伴うテストシナリオを提供する。
テストセットのピクセル精度の高い基底真理を保持する公開アクセス評価サーバをホストしています(https://benchmark.mvtec.com/)。
すべての画像データはhttps://www.mvtec.com/company/research/datasets/mvtec-ad-2で入手できる。
関連論文リスト
- CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset [14.246172794156987]
$textitCableInspect-AD$は、カナダの公共ユーティリティであるHydro-Qu'ebecのドメインエキスパートによって作成、注釈付けされた高品質なデータセットである。
このデータセットには、現実世界の異常に挑戦する高解像度の画像が含まれており、さまざまな重度レベルの欠陥をカバーしている。
モデルの性能を評価するために,クロスバリデーションに基づく包括的評価プロトコルを提案する。
論文 参考訳(メタデータ) (2024-09-30T14:50:13Z) - AnomalySD: Few-Shot Multi-Class Anomaly Detection with Stable Diffusion Model [7.942354689705658]
異常検出は製造業において重要な課題であり、製品の欠陥部分を特定することを目的としている。
ほとんどの産業的異常検出法は、訓練に十分な正規データが存在することを前提としている。
本稿では,安定拡散モデルを用いた数発のマルチクラス異常検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-04T08:33:44Z) - Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
制約のない画像できめ細かなオブジェクト検出アノテーションを取得するのは、時間がかかり、コストがかかり、ノイズに悩まされる。
ノイズの多いクラウドソースアノテーションでオブジェクト検出をより効果的に訓練するための新しいベイズ検出結合(BDC)フレームワークを提案する。
BDCはモデルに依存しず、アノテータのスキルレベルに関する事前の知識を必要とせず、既存のオブジェクト検出モデルとシームレスに統合される。
論文 参考訳(メタデータ) (2024-07-10T18:00:54Z) - Domain-independent detection of known anomalies [1.3232004853011963]
異常検出アプローチは、スパースな名目データで訓練することができるが、ドメインの一般化アプローチは、以前は目に見えないドメイン内のオブジェクトを検出することができる。
3つの新しいデータセットを生成することにより、確立されたMVTec ADデータセットを改良する。
SEMLPは、平均画像レベルのAUROCが87.2%であるのに対して、MIROは80.4%である。
論文 参考訳(メタデータ) (2024-07-03T08:35:52Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance [0.562479170374811]
Per-IMage Overlap(PIMO)は、AUROCとAUPROの欠点に対処する新しいメトリクスである。
画像ごとのリコールの測定は、計算を単純化し、ノイズの多いアノテーションに対してより堅牢である。
実験の結果,PIMOは実用的優位性があり,性能の見識に乏しいことがわかった。
論文 参考訳(メタデータ) (2024-01-03T21:24:44Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection [19.726089445453734]
時系列異常検出は、多くの業界で一般的だが難しい課題である。
実世界から収集されたノイズデータから,時系列の異常を高精度に検出することは困難である。
我々は異常検出モデルを提案する:時系列から画像VAE (T2IVAE)
論文 参考訳(メタデータ) (2021-01-08T08:35:15Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
本稿では,エンド・ツー・エンドのハイブリッド型オブジェクト検出システムであるEHSODについて述べる。
完全なアノテートと弱いアノテートの両方で、ワンショットでトレーニングすることができる。
完全なアノテートされたデータの30%しか持たない複数のオブジェクト検出ベンチマークで、同等の結果が得られる。
論文 参考訳(メタデータ) (2020-02-18T08:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。