ISWSST: Index-space-wave State Superposition Transformers for Multispectral Remotely Sensed Imagery Semantic Segmentation
- URL: http://arxiv.org/abs/2407.03033v1
- Date: Wed, 3 Jul 2024 11:54:17 GMT
- Title: ISWSST: Index-space-wave State Superposition Transformers for Multispectral Remotely Sensed Imagery Semantic Segmentation
- Authors: Chang Li, Pengfei Zhang, Yu Wang,
- Abstract summary: Index-space-wave state superposition Transformer (ISWSST) is the first to be proposed for MSRSI semantic segmentation.
ISWSST is validated and superior to the state-of-the-art architectures for the MSRSI segmentation task.
- Score: 8.70782042307399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently the semantic segmentation task of multispectral remotely sensed imagery (MSRSI) faces the following problems: 1) Usually, only single domain feature (i.e., space domain or frequency domain) is considered; 2) downsampling operation in encoder generally leads to the accuracy loss of edge extraction; 3) multichannel features of MSRSI are not fully considered; and 4) prior knowledge of remote sensing is not fully utilized. To solve the aforementioned issues, an index-space-wave state superposition Transformer (ISWSST) is the first to be proposed for MSRSI semantic segmentation by the inspiration from quantum mechanics, whose superiority is as follows: 1) index, space and wave states are superposed or fused to simulate quantum superposition by adaptively voting decision (i.e., ensemble learning idea) for being a stronger classifier and improving the segmentation accuracy; 2) a lossless wavelet pyramid encoder-decoder module is designed to losslessly reconstruct image and simulate quantum entanglement based on wavelet transform and inverse wavelet transform for avoiding the edge extraction loss; 3) combining multispectral features (i.e. remote sensing index and channel attention mechanism) is proposed to accurately extract ground objects from original resolution images; and 4) quantum mechanics are introduced to interpret the underlying superiority of ISWSST. Experiments show that ISWSST is validated and superior to the state-of-the-art architectures for the MSRSI segmentation task, which improves the segmentation and edge extraction accuracy effectively. Codes will be available publicly after our paper is accepted.
Related papers
- Rethinking Decoders for Transformer-based Semantic Segmentation: Compression is All You Need [3.218600495900291]
We argue that there are fundamental connections between semantic segmentation and compression.
We derive a white-box, fully attentional DEcoder for PrIncipled semantiC segemenTation (DEPICT)
Experiments conducted on dataset ADE20K find that DEPICT consistently outperforms its black-box counterpart, Segmenter.
arXiv Detail & Related papers (2024-11-05T12:10:02Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - UDHF2-Net: Uncertainty-diffusion-model-based High-Frequency TransFormer Network for Remotely Sensed Imagery Interpretation [12.24506241611653]
Uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the first to be proposed.
UDHF2-Net is a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP)
Mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) is a self-supervised learning strategy.
A frequency-wise semi-pseudo-Siamese UDHF2-Net is the first to be proposed to balance accuracy and complexity for change detection.
arXiv Detail & Related papers (2024-06-23T15:03:35Z) - S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction [48.83280067393851]
A representative hyperspectral image acquisition procedure conducts a 3D-to-2D encoding by the coded aperture snapshot spectral imager (CASSI)
Two major challenges stand in the way of a high-fidelity reconstruction: (i) To obtain 2D measurements, CASSI dislocates multiple channels by disperser-titling and squeezes them onto the same spatial region, yielding an entangled data loss.
We propose a spatial-spectral (S2-) transformer architecture with a mask-aware learning strategy to tackle these challenges.
arXiv Detail & Related papers (2022-09-24T19:26:46Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Polarimetric SAR Image Semantic Segmentation with 3D Discrete Wavelet
Transform and Markov Random Field [32.59900433812833]
We present a contextual PolSAR image semantic segmentation method in this paper.
With a newly defined channelwise consistent feature set as input, the 3D-DWT technique is employed to extract discriminative multi-scale features that are robust to speckle noise.
By simultaneously utilizing 3D-DWT features and MRF priors for the first time, contextual information is fully integrated during the segmentation to ensure accurate and smooth segmentation.
arXiv Detail & Related papers (2020-08-05T08:28:18Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
We propose a simple gated network (GateNet) to solve both issues at once.
With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed "Fold" operation (Fold-ASPP) to accurately localize salient objects of various scales.
arXiv Detail & Related papers (2020-07-16T02:00:53Z) - Spatial-Scale Aligned Network for Fine-Grained Recognition [42.71878867504503]
Existing approaches for fine-grained visual recognition focus on learning marginal region-based representations.
We propose the spatial-scale aligned network (SSANET) and implicitly address misalignments during the recognition process.
arXiv Detail & Related papers (2020-01-05T11:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.