Hardware-efficient variational quantum algorithm in trapped-ion quantum computer
- URL: http://arxiv.org/abs/2407.03116v1
- Date: Wed, 3 Jul 2024 14:02:20 GMT
- Title: Hardware-efficient variational quantum algorithm in trapped-ion quantum computer
- Authors: J. -Z. Zhuang, Y. -K. Wu, L. -M. Duan,
- Abstract summary: We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI.
We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI. We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods. We apply HEA-TI to state engineering of cluster states and analyze the scaling of required quantum resources. We also apply HEA-TI to solve the ground state problem of chemical molecules $\mathrm{H_{2}}$, $\mathrm{LiH}$ and $\mathrm{F_{2}}$. We numerically analyze the quantum computing resources required to achieve chemical accuracy and examine the performance under realistic experimental noise and statistical fluctuation. The efficiency of this ansatz is shown to be comparable to other commonly used variational ansatzes like UCCSD, with the advantage of substantially easier implementation in the trapped-ion quantum simulator. This approach showcases the hardware-efficient ansatz as a powerful tool for the application of the near-term quantum computer.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning [2.7119354495508787]
We propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data.
After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved.
Our algorithm has the potential to be utilized in a variety of computing fields.
arXiv Detail & Related papers (2024-05-21T09:26:18Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation [7.92565122267857]
We present a compilation infrastructure that tackles allocation and reclamation of scratch qubits (called ancilla) in quantum programs.
At its core, SQUARE strategically performs uncomputation to create opportunities for qubit reuse.
Our results show that SQUARE improves the average success rate of NISQ applications by 1.47X.
arXiv Detail & Related papers (2020-04-18T06:34:37Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.