論文の概要: Foundations and Frontiers of Graph Learning Theory
- arxiv url: http://arxiv.org/abs/2407.03125v1
- Date: Wed, 3 Jul 2024 14:07:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:06:19.723128
- Title: Foundations and Frontiers of Graph Learning Theory
- Title(参考訳): グラフ学習理論の基礎とフロンティア
- Authors: Yu Huang, Min Zhou, Menglin Yang, Zhen Wang, Muhan Zhang, Jie Wang, Hong Xie, Hao Wang, Defu Lian, Enhong Chen,
- Abstract要約: グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
- 参考スコア(独自算出の注目度): 81.39078977407719
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm. With these models being usually characterized by intuition-driven design or highly intricate components, placing them within the theoretical analysis framework to distill the core concepts, helps understand the key principles that drive the functionality better and guide further development. Given this surge in interest, this article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models. Encompassing discussions on fundamental aspects such as expressiveness power, generalization, optimization, and unique phenomena such as over-smoothing and over-squashing, this piece delves into the theoretical foundations and frontier driving the evolution of graph learning. In addition, this article also presents several challenges and further initiates discussions on possible solutions.
- Abstract(参考訳): グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
特に、グラフ表現を学習するために設計されたニューラルネットワークアーキテクチャであるグラフニューラルネットワーク(GNN)は、一般的なパラダイムとなっている。
これらのモデルは直感駆動設計や高度に複雑なコンポーネントによって特徴づけられ、コア概念を蒸留する理論分析フレームワークの中に配置することで、機能を改善する上で重要な原則を理解し、さらなる開発を導くのに役立つ。
この関心の高まりを踏まえ、本論文は、グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーを包括的にまとめる。
表現力、一般化、最適化、過度な平滑化や過度なスキャッシングのようなユニークな現象といった基本的な側面に関する議論を通し、この論文はグラフ学習の進化を駆動する理論的基礎とフロンティアへと発展していった。
さらに、本記事ではいくつかの課題を提示し、可能なソリューションについてさらに議論を始める。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Understanding Deep Learning via Notions of Rank [5.439020425819001]
この論文は、ディープラーニングの理論を発展させる鍵としてランクの概念を提唱している。
特に、勾配に基づくトレーニングは、いくつかのニューラルネットワークアーキテクチャにおいて、低ランクに対する暗黙の正規化を誘導できると確認する。
明示的な正規化スキームとデータ前処理アルゴリズムを設計するための我々の理論の実践的意味を述べる。
論文 参考訳(メタデータ) (2024-08-04T18:47:55Z) - Future Directions in the Theory of Graph Machine Learning [49.049992612331685]
グラフ上の機械学習、特にグラフニューラルネットワーク(GNN)を使用すると、グラフデータが広く利用できるため、関心が高まっている。
実際の成功にもかかわらず、GNNの特性に関する理論的理解は非常に不完全である。
論文 参考訳(メタデータ) (2024-02-03T22:55:31Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
この拡張抽象化はハイパーグラフニューラルネットワーク(HyperGNN)の表現性、学習、および(構造的)一般化を分析するためのフレームワークを記述する。
具体的には、HyperGNNが有限データセットからどのように学習し、任意の入力サイズのグラフ推論問題に構造的に一般化するかに焦点を当てる。
論文 参考訳(メタデータ) (2023-03-09T18:42:18Z) - A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge
Graphs [6.379544211152605]
グラフニューラルネットワークは、グラフ構造化データ上での表現学習のための顕著なモデルである。
私たちの目標は、知識グラフのためのグラフニューラルネットワークのランドスケープを体系的に理解することです。
論文 参考訳(メタデータ) (2023-02-04T17:40:03Z) - Weisfeiler and Leman Go Relational [4.29881872550313]
本稿では,よく知られたGCNおよびコンポジションGCNアーキテクチャの表現力の限界について検討する。
上記の2つのアーキテクチャの制限を確実に克服する$k$-RNアーキテクチャを導入します。
論文 参考訳(メタデータ) (2022-11-30T15:56:46Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
グラフ表現学習は多くのグラフマイニングアプリケーションにおいて重要な役割を果たすが、大規模なグラフの埋め込みを学習することは依然として問題である。
最近の研究は、グラフの要約(つまり、より小さな要約グラフへの埋め込みを学習し、元のグラフのノード埋め込みを復元することでスケーラビリティを向上させる。
本稿では,導入したカーネル行列に基づく3つの特定の埋め込み学習手法について,詳細な理論的解析を行う。
論文 参考訳(メタデータ) (2022-07-04T04:09:50Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。