論文の概要: MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
- arxiv url: http://arxiv.org/abs/2407.03131v2
- Date: Mon, 8 Jul 2024 13:11:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 22:46:24.896029
- Title: MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
- Title(参考訳): MVGT:脳波認識のための空間関係に基づく多視点グラフ変換器
- Authors: Yanjie Cui, Xiaohong Liu, Jing Liang, Yamin Fu,
- Abstract要約: 空間関係に基づく多視点グラフ変換器(MVGT)を提案する。
脳波チャネルの空間情報を符号化としてモデルに組み込むことにより,脳波チャネルの空間構造を知覚する能力を向上させる。
- 参考スコア(独自算出の注目度): 4.184462746475896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG), a medical imaging technique that captures scalp electrical activity of brain structures via electrodes, has been widely used in affective computing. The spatial domain of EEG is rich in affective information. However, few of the existing studies have simultaneously analyzed EEG signals from multiple perspectives of geometric and anatomical structures in spatial domain. In this paper, we propose a multi-view Graph Transformer (MVGT) based on spatial relations, which integrates information from the temporal, frequency and spatial domains, including geometric and anatomical structures, so as to enhance the expressive power of the model comprehensively. We incorporate the spatial information of EEG channels into the model as encoding, thereby improving its ability to perceive the spatial structure of the channels. Meanwhile, experimental results based on publicly available datasets demonstrate that our proposed model outperforms state-of-the-art methods in recent years. In addition, the results also show that the MVGT could extract information from multiple domains and capture inter-channel relationships in EEG emotion recognition tasks effectively.
- Abstract(参考訳): 脳波(Electroencephalography、EEG)は、電極を介して脳構造の頭皮電気活動を捉える医療画像技術である。
脳波の空間領域は感情情報に富んでいる。
しかし、空間領域における幾何的構造と解剖学的構造の複数の視点から脳波信号を同時に分析する研究はほとんどない。
本稿では,空間的関係に基づく多視点グラフ変換器(MVGT)を提案し,幾何学的・解剖学的構造を含む時間的・周波数的・空間的領域の情報を統合することにより,モデルの表現力を包括的に向上させる。
脳波チャネルの空間情報を符号化としてモデルに組み込むことにより,脳波チャネルの空間構造を知覚する能力を向上させる。
一方, 公開データセットに基づく実験結果から, 提案手法は近年, 最先端の手法よりも優れていることが示された。
さらに、MVGTは複数の領域から情報を抽出し、脳波の感情認識タスクにおけるチャネル間関係を効果的に捉えることができることを示した。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
本稿では,脳波の位置と対応する脳領域のセマンティクスの相互作用を捉える動的グラフニューラルネットワーク(GNN)フレームワークであるNeuroGNNを紹介する。
実世界のデータを用いた実験により、NeuroGNNは既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-05-08T21:36:49Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
本研究は,脳波に基づく深部表現の頑健な学習を行うための2段階の手法を提案する。
ディープラーニングアーキテクチャを用いて,3つのデータセットにまたがる特徴抽出パイプラインの一般化性を実証する。
本稿では,未知の画像を脳波空間に変換し,近似を用いて再構成する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-25T10:26:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
本稿では,ネットワーク・テンポラルエンコーディングと繰り返しアテンションブロックのハイブリッド構造を用いて,解釈可能な表現を取得するディープニューラルネットワークを提案する。
提案したアーキテクチャは、公開されているDEAPデータセット上での感情分類の最先端結果を上回ることを実証する。
論文 参考訳(メタデータ) (2023-07-06T15:35:14Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - Spatio-Temporal Analysis of Transformer based Architecture for Attention
Estimation from EEG [2.7076510056452654]
脳波信号から特定のタスクに与えられた注意状態、すなわち注意度を復元できる新しいフレームワークを提案する。
従来は電極による脳波の空間的関係をよく検討していたが, トランスフォーマネットワークを用いた空間的・時間的情報の利用も提案する。
提案したネットワークは、2つの公開データセットでトレーニングされ、検証され、最先端のモデルよりも高い結果が得られる。
論文 参考訳(メタデータ) (2022-04-04T08:05:33Z) - SFE-Net: EEG-based Emotion Recognition with Symmetrical Spatial Feature
Extraction [1.8047694351309205]
脳波の特徴抽出と感情認識のための空間的折り畳みアンサンブルネットワーク(SFENet)を提案する。
ヒト脳の空間対称性のメカニズムによって、入力された脳波チャンネルデータを5つの異なる対称戦略で折り畳む。
このネットワークにより、異なる対称折り畳み記号の空間的特徴を同時に抽出することができ、特徴認識の堅牢性と精度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-04-09T12:59:38Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。