論文の概要: MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
- arxiv url: http://arxiv.org/abs/2407.03131v3
- Date: Tue, 6 Aug 2024 09:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 18:32:55.258945
- Title: MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
- Title(参考訳): MVGT:脳波認識のための空間関係に基づく多視点グラフ変換器
- Authors: Yanjie Cui, Xiaohong Liu, Jing Liang, Yamin Fu,
- Abstract要約: 空間関係に基づく多視点グラフ変換器(MVGT)を提案する。
脳波チャネルの空間情報を符号化としてモデルに組み込むことにより,脳波チャネルの空間構造を知覚する能力を向上させる。
- 参考スコア(独自算出の注目度): 4.184462746475896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG), a medical imaging technique that captures scalp electrical activity of brain structures via electrodes, has been widely used in affective computing. The spatial domain of EEG is rich in affective information. However, few of the existing studies have simultaneously analyzed EEG signals from multiple perspectives of geometric and anatomical structures in spatial domain. In this paper, we propose a multi-view Graph Transformer (MVGT) based on spatial relations, which integrates information from the temporal, frequency and spatial domains, including geometric and anatomical structures, so as to enhance the expressive power of the model comprehensively. We incorporate the spatial information of EEG channels into the model as encoding, thereby improving its ability to perceive the spatial structure of the channels. Meanwhile, experimental results based on publicly available datasets demonstrate that our proposed model outperforms state-of-the-art methods in recent years. In addition, the results also show that the MVGT could extract information from multiple domains and capture inter-channel relationships in EEG emotion recognition tasks effectively.
- Abstract(参考訳): 脳波(Electroencephalography、EEG)は、電極を介して脳構造の頭皮電気活動を捉える医療画像技術である。
脳波の空間領域は感情情報に富んでいる。
しかし、空間領域における幾何的構造と解剖学的構造の複数の視点から脳波信号を同時に分析する研究はほとんどない。
本稿では,空間的関係に基づく多視点グラフ変換器(MVGT)を提案し,幾何学的・解剖学的構造を含む時間的・周波数的・空間的領域の情報を統合することにより,モデルの表現力を包括的に向上させる。
脳波チャネルの空間情報を符号化としてモデルに組み込むことにより,脳波チャネルの空間構造を知覚する能力を向上させる。
一方, 公開データセットに基づく実験結果から, 提案手法は近年, 最先端の手法よりも優れていることが示された。
さらに、MVGTは複数の領域から情報を抽出し、脳波の感情認識タスクにおけるチャネル間関係を効果的に捉えることができることを示した。
関連論文リスト
- CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - DuA: Dual Attentive Transformer in Long-Term Continuous EEG Emotion Analysis [15.858955204180907]
本稿では,長期連続脳波感情分析のためのDuA変換フレームワークを提案する。
セグメントベースのアプローチとは異なり、DuAトランスフォーマーはEEGトライアル全体を全体として処理し、トライアルレベルで感情を識別する。
このフレームワークは様々な信号長に適応するように設計されており、従来の手法よりもかなり有利である。
論文 参考訳(メタデータ) (2024-07-30T03:31:03Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Multi-Source Domain Adaptation with Transformer-based Feature Generation
for Subject-Independent EEG-based Emotion Recognition [0.5439020425819]
本稿では,複数の情報源からの情報を活用するために,トランスフォーマーベースの特徴生成器(MSDA-TF)を用いたマルチソース領域適応手法を提案する。
適応過程において、相関値に基づいてソース対象をグループ化し、ソース内だけでなく、対象対象のモーメントを各ソースと整合させることを目的としている。
MSDA-TFはSEEDデータセット上で検証され、有望な結果が得られた。
論文 参考訳(メタデータ) (2024-01-04T16:38:47Z) - Graph Convolutional Network with Connectivity Uncertainty for EEG-based
Emotion Recognition [20.655367200006076]
本研究では,脳波信号の空間依存性と時間スペクトルの相対性を表す分布に基づく不確実性手法を提案する。
グラフ混合手法は、遅延接続エッジを強化し、ノイズラベル問題を緩和するために用いられる。
感情認識タスクにおいて、SEEDとSEEDIVという2つの広く使われているデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-10-22T03:47:11Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - DAT++: Spatially Dynamic Vision Transformer with Deformable Attention [87.41016963608067]
Deformable Attention Transformer (DAT++)を提案する。
DAT++は、85.9%のImageNet精度、54.5および47.0のMS-COCOインスタンスセグメンテーションmAP、51.5のADE20KセマンティックセグメンテーションmIoUで、様々なビジュアル認識ベンチマークで最先端の結果を達成している。
論文 参考訳(メタデータ) (2023-09-04T08:26:47Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙なrの手がかりのマイニングに重点を置いている。
本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (2021-11-23T18:57:11Z) - EEG-ConvTransformer for Single-Trial EEG based Visual Stimuli
Classification [5.076419064097734]
本研究は,マルチヘッド自己注意に基づくEEG-ConvTranformerネットワークを導入する。
5種類の視覚刺激分類タスクにまたがる最先端技術による分類精度の向上を実現している。
論文 参考訳(メタデータ) (2021-07-08T17:22:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。