論文の概要: A multi-objective combinatorial optimisation framework for large scale hierarchical population synthesis
- arxiv url: http://arxiv.org/abs/2407.03180v1
- Date: Wed, 3 Jul 2024 15:01:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 13:46:50.804536
- Title: A multi-objective combinatorial optimisation framework for large scale hierarchical population synthesis
- Title(参考訳): 大規模階層型集団合成のための多目的組合せ最適化フレームワーク
- Authors: Imran Mahmood, Nicholas Bishop, Anisoara Calinescu, Michael Wooldridge, Ioannis Zachos,
- Abstract要約: エージェントベースのシミュレーションでは、エージェントの合成集団は個人の構造、行動、相互作用を表現するために一般的に使用される。
大規模集団合成のための多目的最適化手法を提案する。
提案手法は, 個人と世帯間の複雑な階層構造をサポートし, 大規模に拡張可能であり, 連続表復元誤差の最小化を実現する。
- 参考スコア(独自算出の注目度): 1.2233362977312945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In agent-based simulations, synthetic populations of agents are commonly used to represent the structure, behaviour, and interactions of individuals. However, generating a synthetic population that accurately reflects real population statistics is a challenging task, particularly when performed at scale. In this paper, we propose a multi objective combinatorial optimisation technique for large scale population synthesis. We demonstrate the effectiveness of our approach by generating a synthetic population for selected regions and validating it on contingency tables from real population data. Our approach supports complex hierarchical structures between individuals and households, is scalable to large populations and achieves minimal contigency table reconstruction error. Hence, it provides a useful tool for policymakers and researchers for simulating the dynamics of complex populations.
- Abstract(参考訳): エージェントベースのシミュレーションでは、エージェントの合成集団は個人の構造、行動、相互作用を表現するために一般的に使用される。
しかし、実際の人口統計を正確に反映した合成人口を生成することは、特に大規模に実施する場合の課題である。
本稿では,大規模集団合成のための多目的組合せ最適化手法を提案する。
提案手法の有効性を, 実人口データから, 選択された地域に対する合成人口を生成し, 同時性表上で検証することで実証する。
提案手法は, 個人と世帯間の複雑な階層構造をサポートし, 人口に対してスケーラブルであり, 連続表復元誤差の最小化を実現する。
したがって、複雑な人口の動態をシミュレートするための政策立案者や研究者に有用なツールを提供する。
関連論文リスト
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - GenRec: A Flexible Data Generator for Recommendations [1.384948712833979]
GenRecは、現実的でよく知られた特性を示す合成ユーザ・イテム相互作用を生成するための新しいフレームワークである。
このフレームワークは潜在因子モデリングに基づく生成プロセスに基づいている。
論文 参考訳(メタデータ) (2024-07-23T15:53:17Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
不均衡なデータと急激な相関は、機械学習とデータサイエンスにおける一般的な課題である。
過度に表現されていないクラスのインスタンス数を人工的に増加させるオーバーサンプリングは、これらの課題に対処するために広く採用されている。
我々は,大規模言語モデルの能力を活用して,少数グループを対象とした高品質な合成データを生成する,体系的なオーバーサンプリング手法であるOPALを紹介する。
論文 参考訳(メタデータ) (2024-06-05T21:24:26Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Synthpop++: A Hybrid Framework for Generating A Country-scale Synthetic Population [0.680303951699936]
人口調査は費用がかかり、時間がかかり、プライバシーの懸念も高まる可能性がある。
SynthPop++を導入し、複数の実世界のサーベイからのデータを組み合わせて、実スケールの合成人口を生成する。
実験の結果,インドにおける様々な行政単位の人口を人工的にシミュレートできることが示唆された。
論文 参考訳(メタデータ) (2023-04-24T17:27:56Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
現代のロボティクスは、共有環境内で複数のエンボディエージェントを動作させることが多い。
標準的なサンプリングベースのアルゴリズムは、ロボットの関節空間における解の探索に使用できる。
我々は、因子化の概念をサンプリングベースアルゴリズムに統合し、既存の手法への最小限の変更しか必要としない。
本稿では, PRM* のサンプル複雑性の観点から解析的ゲインを導出し, RRG の実証結果を示す。
論文 参考訳(メタデータ) (2023-04-01T15:50:18Z) - Copula-based transferable models for synthetic population generation [1.370096215615823]
集団合成は、マイクロエージェントの標的集団の合成的かつ現実的な表現を生成することを含む。
従来の手法は、しばしばターゲットのサンプルに依存し、高いコストと小さなサンプルサイズのために制限に直面している。
本研究では,実験的辺縁分布のみが知られている対象個体群を対象とした合成データを生成するためのコプラに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-17T23:58:14Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Composite Travel Generative Adversarial Networks for Tabular and
Sequential Population Synthesis [5.259027520298188]
本稿では,人口の関節分布を推定するためにCTGAN(Composite Travel Generative Adversarial Network)を提案する。
CTGANモデルは、変分オートエンコーダ(VAE)法など、最近提案された他の手法と比較される。
論文 参考訳(メタデータ) (2020-04-15T00:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。