A multi-objective combinatorial optimisation framework for large scale hierarchical population synthesis
- URL: http://arxiv.org/abs/2407.03180v1
- Date: Wed, 3 Jul 2024 15:01:12 GMT
- Title: A multi-objective combinatorial optimisation framework for large scale hierarchical population synthesis
- Authors: Imran Mahmood, Nicholas Bishop, Anisoara Calinescu, Michael Wooldridge, Ioannis Zachos,
- Abstract summary: In agent-based simulations, synthetic populations of agents are commonly used to represent the structure, behaviour, and interactions of individuals.
We propose a multi objective optimisation technique for large scale population synthesis.
Our approach supports complex hierarchical structures between individuals and households, is scalable to large populations and achieves minimal contigency table reconstruction error.
- Score: 1.2233362977312945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In agent-based simulations, synthetic populations of agents are commonly used to represent the structure, behaviour, and interactions of individuals. However, generating a synthetic population that accurately reflects real population statistics is a challenging task, particularly when performed at scale. In this paper, we propose a multi objective combinatorial optimisation technique for large scale population synthesis. We demonstrate the effectiveness of our approach by generating a synthetic population for selected regions and validating it on contingency tables from real population data. Our approach supports complex hierarchical structures between individuals and households, is scalable to large populations and achieves minimal contigency table reconstruction error. Hence, it provides a useful tool for policymakers and researchers for simulating the dynamics of complex populations.
Related papers
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - GenRec: A Flexible Data Generator for Recommendations [1.384948712833979]
GenRec is a novel framework for generating synthetic user-item interactions that exhibit realistic and well-known properties.
The framework is based on a generative process based on latent factor modeling.
arXiv Detail & Related papers (2024-07-23T15:53:17Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
Imbalanced data and spurious correlations are common challenges in machine learning and data science.
Oversampling, which artificially increases the number of instances in the underrepresented classes, has been widely adopted to tackle these challenges.
We introduce OPAL, a systematic oversampling approach that leverages the capabilities of large language models to generate high-quality synthetic data for minority groups.
arXiv Detail & Related papers (2024-06-05T21:24:26Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Synthpop++: A Hybrid Framework for Generating A Country-scale Synthetic Population [0.680303951699936]
Population censuses are costly, time-consuming, and may also raise privacy concerns.
We introduce SynthPop++, which can combine data from multiple real-world surveys to produce a real-scale synthetic population.
Our experimental results show that synthetic population can realistically simulate the population for various administrative units of India.
arXiv Detail & Related papers (2023-04-24T17:27:56Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Copula-based transferable models for synthetic population generation [1.370096215615823]
Population synthesis involves generating synthetic yet realistic representations of a target population of micro-agents.
Traditional methods, often reliant on target population samples, face limitations due to high costs and small sample sizes.
We propose a novel framework based on copulas to generate synthetic data for target populations where only empirical marginal distributions are known.
arXiv Detail & Related papers (2023-02-17T23:58:14Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Composite Travel Generative Adversarial Networks for Tabular and
Sequential Population Synthesis [5.259027520298188]
We present a Composite Travel Generative Adversarial Network (CTGAN) to estimate the underlying joint distribution of a population.
The CTGAN model is compared with other recently proposed methods such as the Variational Autoencoders (VAE) method.
arXiv Detail & Related papers (2020-04-15T00:06:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.