論文の概要: Cutting through the noise to motivate people: A comprehensive analysis of COVID-19 social media posts de/motivating vaccination
- arxiv url: http://arxiv.org/abs/2407.03190v2
- Date: Fri, 26 Jul 2024 21:51:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 22:48:36.599598
- Title: Cutting through the noise to motivate people: A comprehensive analysis of COVID-19 social media posts de/motivating vaccination
- Title(参考訳): 人々のモチベーションを高めるためにノイズを遮断する: 予防接種を動機づけるソーシャルメディア投稿の包括的分析
- Authors: Ashiqur Rahman, Ehsan Mohammadi, Hamed Alhoori,
- Abstract要約: 新型コロナウイルス(COVID-19)のパンデミックは、医療情報システムの重大な弱点を露呈した。
ソーシャルメディア上の誤報が圧倒的に多いことは、人々に適切な予防措置をとらせ、予防接種を受けるよう動機付けるという課題を生み出した。
本研究では,ソーシャルメディアにおける科学的コミュニケーションと公衆のモチベーションについて論じる。
- 参考スコア(独自算出の注目度): 1.1606619391009658
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The COVID-19 pandemic exposed significant weaknesses in the healthcare information system. The overwhelming volume of misinformation on social media and other socioeconomic factors created extraordinary challenges to motivate people to take proper precautions and get vaccinated. In this context, our work explored a novel direction by analyzing an extensive dataset collected over two years, identifying the topics de/motivating the public about COVID-19 vaccination. We analyzed these topics based on time, geographic location, and political orientation. We noticed that while the motivating topics remain the same over time and geographic location, the demotivating topics change rapidly. We also identified that intrinsic motivation, rather than external mandate, is more advantageous to inspire the public. This study addresses scientific communication and public motivation in social media. It can help public health officials, policymakers, and social media platforms develop more effective messaging strategies to cut through the noise of misinformation and educate the public about scientific findings.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは、医療情報システムの重大な弱点を露呈した。
ソーシャルメディアやその他の社会経済的要因に関する誤報が圧倒的に多いことは、人々が適切な予防措置を講じて予防接種を受けるよう動機付けるという、極めて困難な課題を生み出した。
そこで本研究では,2年間にわたって収集された広範囲なデータセットを解析し,新型コロナウイルスの予防接種に関する話題を抽出し,新たな方向性を探究した。
我々はこれらのトピックを、時間、地理的位置、政治的指向に基づいて分析した。
モチベーションのあるトピックは時間と地理的な場所によって変わらないが、モチベーションのあるトピックは急速に変化することに気づきました。
また、外的委任よりも内在的動機の方が、大衆に刺激を与えるのに有利であることも確認した。
本研究では,ソーシャルメディアにおける科学的コミュニケーションと公衆のモチベーションについて論じる。
これは、公衆衛生当局、政策立案者、ソーシャルメディアプラットフォームが、誤報のノイズを減らし、科学的な発見について大衆に教育するための、より効果的なメッセージング戦略を開発するのに役立つ。
関連論文リスト
- Large language models for sentiment analysis of newspaper articles during COVID-19: The Guardian [0.16777183511743468]
この研究は、新型コロナウイルスのさまざまな段階におけるガーディアン紙の感情分析を提供する。
パンデミックの初期段階では、公衆の感情が緊急の危機対応を優先し、後に健康と経済への影響に焦点を移した。
結果は、パンデミックの初期段階において、公衆の感情が緊急の危機対応を優先し、後に健康と経済への影響に焦点を移したことを示している。
論文 参考訳(メタデータ) (2024-05-20T07:10:52Z) - Exploring a Hybrid Deep Learning Framework to Automatically Discover
Topic and Sentiment in COVID-19 Tweets [2.3940819037450987]
新型コロナウイルスは、世界的な公衆衛生問題や、経済危機、失業、精神的苦痛などの問題を引き起こしている。
このパンデミックは世界中で致命的であり、多くの人々が感染症だけでなく、問題、ストレス、不思議、恐怖、恨み、憎しみに悩まされている。
Twitterは、非常に影響力のあるソーシャルメディアプラットフォームであり、健康関連情報、ニュース、意見、世論などの重要な情報源である。
論文 参考訳(メタデータ) (2023-12-02T16:58:17Z) - Visualizing Relation Between (De)Motivating Topics and Public Stance
toward COVID-19 Vaccine [0.0]
本研究では,新型コロナウイルス感染拡大に伴うTwitter圏内の話題を検査・分析するインタラクティブな可視化ツールを提案する。
このツールは、視覚分析のあらゆるシナリオに対して容易に一般化することができ、研究者や一般大衆のソーシャルメディアデータの透明性を高めることができる。
論文 参考訳(メタデータ) (2023-06-21T09:01:53Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
われわれは、中国のマイクロブログサイトWeiboで、新型コロナウイルス(COVID-19)に関する4ヶ月にわたる噂に関するオンラインディスカッションを包括的に分析した。
以上の結果から、不安(恐怖)型健康噂は、希望(希望)型よりもはるかに多くの議論を巻き起こし、長く続いたことが示唆された。
本稿では,噂の議論を抑えるためのデバンキングの有効性を示す。
論文 参考訳(メタデータ) (2021-09-25T14:02:29Z) - Health, Psychosocial, and Social issues emanating from COVID-19 pandemic
based on Social Media Comments using Natural Language Processing [8.150081210763567]
新型コロナウイルス(COVID-19)のパンデミックは、世界の健康危機を引き起こし、多くの人の生活に影響を与えている。
ソーシャルメディアのデータは、政府や保健機関がパンデミックにどう対処しているかに対する大衆の認識を明らかにすることができる。
本稿は、新型コロナウイルスのパンデミックが世界規模でソーシャルメディアデータを利用した人々に与える影響を調査することを目的とする。
論文 参考訳(メタデータ) (2020-07-23T17:19:50Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
大規模なソーシャルメディア投稿から、COVID-19による話題や感情のダイナミクスを分析した。
安全な家にいよう」といった話題は肯定的な感情で支配されている。
人の死のような他のものは、常に否定的な感情を示しています。
論文 参考訳(メタデータ) (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
我々は、2020年1月20日から2020年5月11日までの間に、TwitterとWeiboの投稿に基づいて、アメリカ人と中国人の感情的な軌跡を分析した。
中国と国連の2つの非常に異なる国とは対照的に、異なる文化におけるCOVID-19に対する人々の見解に顕著な違いが浮かび上がっている。
我々の研究は、公共の感情やパンデミックに対する懸念をリアルタイムで明らかにするための計算的アプローチを提供し、政策立案者が人々のニーズをよりよく理解し、それによって最適な政策を立案するのに役立つ可能性がある。
論文 参考訳(メタデータ) (2020-05-29T09:24:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。