論文の概要: Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal
- arxiv url: http://arxiv.org/abs/2407.03205v1
- Date: Wed, 3 Jul 2024 15:36:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 13:37:05.910577
- Title: Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal
- Title(参考訳): 高品位指向の提案によるカテゴリー対応動的ラベルアサインメント
- Authors: Mingkui Feng, Hancheng Yu, Xiaoyu Dang, Ming Zhou,
- Abstract要約: 本稿では,オブジェクト指向検出フレームワークにおいて,複素平面に基づく OBB 表現を導入する。
コンバータRPNヘッドは、角度情報を予測するために構成される。
提案した損失関数とコンバータRPNヘッドは,高品質な指向性の提案を共同で生成する。
- 参考スコア(独自算出の注目度): 17.674175038655058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objects in aerial images are typically embedded in complex backgrounds and exhibit arbitrary orientations. When employing oriented bounding boxes (OBB) to represent arbitrary oriented objects, the periodicity of angles could lead to discontinuities in label regression values at the boundaries, inducing abrupt fluctuations in the loss function. To address this problem, an OBB representation based on the complex plane is introduced in the oriented detection framework, and a trigonometric loss function is proposed. Moreover, leveraging prior knowledge of complex background environments and significant differences in large objects in aerial images, a conformer RPN head is constructed to predict angle information. The proposed loss function and conformer RPN head jointly generate high-quality oriented proposals. A category-aware dynamic label assignment based on predicted category feedback is proposed to address the limitations of solely relying on IoU for proposal label assignment. This method makes negative sample selection more representative, ensuring consistency between classification and regression features. Experiments were conducted on four realistic oriented detection datasets, and the results demonstrate superior performance in oriented object detection with minimal parameter tuning and time costs. Specifically, mean average precision (mAP) scores of 82.02%, 71.99%, 69.87%, and 98.77% were achieved on the DOTA-v1.0, DOTA-v1.5, DIOR-R, and HRSC2016 datasets, respectively.
- Abstract(参考訳): 空中画像のオブジェクトは通常複雑な背景に埋め込まれ、任意の向きを示す。
任意のオブジェクト指向対象を表すためにオブジェクト指向境界ボックス(OBB)を用いる場合、角度の周期性は境界におけるラベル回帰値の不連続を招き、損失関数の急激なゆらぎを引き起こす。
この問題に対処するために、オブジェクト指向検出フレームワークに複素平面に基づく OBB 表現を導入し、三角損失関数を提案する。
さらに、複雑な背景環境の事前知識と空中画像における大きな物体の顕著な差異を利用して、コンバータRPNヘッドを構築し、角度情報を予測する。
提案した損失関数とコンバータRPNヘッドは,高品質な指向性の提案を共同で生成する。
予測されたカテゴリフィードバックに基づくカテゴリ対応動的ラベル代入を提案し,IoUのみに依存したラベル代入の制限に対処する。
この方法により、負のサンプル選択がより代表的になり、分類と回帰特性の整合性が確保される。
4つの現実的指向性検出データセットを用いて実験を行い、パラメータ調整と時間コストの最小化によるオブジェクト指向物体検出において優れた性能を示した。
具体的には、平均精度(mAP)スコアは平均82.02%、71.99%、69.87%、98.77%で、DOTA-v1.0、DOTA-v1.5、DIOR-R、HRSC2016の各データセットでそれぞれ達成された。
関連論文リスト
- SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
本稿では,SOOD++ と呼ばれる簡易かつ効果的な半教師付きオブジェクト指向検出手法を提案する。
具体的には、空中画像からの物体は、通常任意の向き、小さなスケール、集約である。
様々なラベル付き環境下での多目的オブジェクトデータセットに対する大規模な実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T07:03:51Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Metric-aligned Sample Selection and Critical Feature Sampling for
Oriented Object Detection [4.677438149607058]
サンプルの品質を評価するためにアフィン変換を導入し、距離に基づくラベル割り当て戦略を提案する。
提案手法は,物体の形状と回転特性に応じて動的に試料を選択可能である。
その結果,提案した検出器の最先端の精度が示された。
論文 参考訳(メタデータ) (2023-06-29T06:36:46Z) - ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection [55.291579862817656]
既存のオブジェクト指向オブジェクト検出手法では、モデルの性能を測定するために計量AP$_50$が一般的である。
我々は、AP$_50$は本来、角度偏差に大きな耐性があるため、オブジェクト指向物体検出には適さないと主張している。
本稿では,ARS-DETR(Aspect Ratio Sensitive Oriented Object Detector with Transformer)を提案する。
論文 参考訳(メタデータ) (2023-03-09T02:20:56Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
本稿では,新しいトレーニングサンプルジェネレータを構築するために,動的拡張アンカー(DEA)ネットワークを提案する。
提案手法は,適度な推論速度とトレーニングの計算オーバーヘッドを伴って,最先端の性能を精度良く達成する。
論文 参考訳(メタデータ) (2021-12-13T14:37:20Z) - Anchor-free Oriented Proposal Generator for Object Detection [59.54125119453818]
オブジェクト指向物体検出はリモートセンシング画像解釈において実用的で困難な課題である。
今日では、指向性検出器は主に水平方向の箱を中間体として使用し、それらから指向性のある箱を導出している。
本稿では,ネットワークアーキテクチャから水平ボックス関連操作を放棄する,AOPG(Anchor-free Oriented Proposal Generator)を提案する。
論文 参考訳(メタデータ) (2021-10-05T10:45:51Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
まず,既存の回帰型回転検出器が抱える境界問題は,角周期性や角秩序によって引き起こされることを示した。
我々は、角予測タスクを回帰問題から分類問題に変換する。
得られた円形分布角分類問題に対して、まず、角度の周期性に対処し、隣り合う角度に対する誤差耐性を高めるために、円スムースラベル法を考案する。
論文 参考訳(メタデータ) (2020-03-12T03:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。