論文の概要: When big data actually are low-rank, or entrywise approximation of certain function-generated matrices
- arxiv url: http://arxiv.org/abs/2407.03250v1
- Date: Wed, 3 Jul 2024 16:29:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 13:27:21.126095
- Title: When big data actually are low-rank, or entrywise approximation of certain function-generated matrices
- Title(参考訳): ビッグデータが実際に低ランクである場合、あるいは特定の関数生成行列のエントリワイズ近似
- Authors: Stanislav Budzinskiy,
- Abstract要約: 我々は、特定の分析関数のクラスに対して、そのような行列は$m$に依存しないランクの正確なエントリーワイズ近似を許容する、という文献の議論に反論する。
n × n$ の関数生成行列が次数 $varepsilon$ のエントリーワイド誤差で階数 $mathcalO(log(n) varepsilon-2 Mathrmpolylog(varepsilon-1)$ で近似できる関数のより狭い3つのクラスを記述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The article concerns low-rank approximation of matrices generated by sampling a smooth function of two $m$-dimensional variables. We refute an argument made in the literature that, for a specific class of analytic functions, such matrices admit accurate entrywise approximation of rank that is independent of $m$. We provide a theoretical explanation of the numerical results presented in support of this argument, describing three narrower classes of functions for which $n \times n$ function-generated matrices can be approximated within an entrywise error of order $\varepsilon$ with rank $\mathcal{O}(\log(n) \varepsilon^{-2} \mathrm{polylog}(\varepsilon^{-1}))$ that is independent of the dimension $m$: (i) functions of the inner product of the two variables, (ii) functions of the squared Euclidean distance between the variables, and (iii) shift-invariant positive-definite kernels. We extend our argument to low-rank tensor-train approximation of tensors generated with functions of the multi-linear product of their $m$-dimensional variables. We discuss our results in the context of low-rank approximation of attention in transformer neural networks.
- Abstract(参考訳): この記事は、2$m$次元変数の滑らかな関数をサンプリングすることによって生成される行列の低ランク近似に関するものである。
我々は、特定の分析関数のクラスに対して、そのような行列は$m$に依存しないランクの正確なエントリーワイズ近似を許容する、という文献の議論に反論する。
この議論を支持するために提示された数値結果について理論的に説明し、$n \times n$ 関数生成行列が階数 $\varepsilon$ のエントリーワイド誤差で近似できる関数の3つのより狭いクラスを記述し、階数 $\mathcal{O}(\log(n) \varepsilon^{-2} \mathrm{polylog}(\varepsilon^{-1})$ は次元 $m$ とは独立である。
i) 2つの変数の内積の関数
(ii)変数間の2乗ユークリッド距離の関数と
(iii)シフト不変正定核。
我々は、この議論を、それらの$m$次元変数の多線型積の関数で生成されるテンソルの低ランクテンソルトレイン近似に拡張する。
本稿では、トランスニューラルネットワークにおける低ランクの注目度近似の文脈における結果について論じる。
関連論文リスト
- An approximation of the $S$ matrix for solving the Marchenko equation [0.0]
ここでは、有理関数の和として定式化された運動量$q$に対する$S$-行列依存の新たな近似と、truncated Sinc 級数を示す。
このアプローチにより、特定の解像度で$S$行列をポイントワイズで決定することができ、共鳴挙動などの重要な特徴を高精度に捉えることができる。
論文 参考訳(メタデータ) (2024-10-27T11:06:28Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の等方的ガウスデータの下で勾配降下学習の問題を考察する。
SGDアルゴリズムで最適化された2層ニューラルネットワークは、サンプル付き任意のリンク関数の$f_*$を学習し、実行時の複雑さは$n asymp T asymp C(q) cdot dであることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - An Equivalence Principle for the Spectrum of Random Inner-Product Kernel
Matrices with Polynomial Scalings [21.727073594338297]
この研究は、機械学習と統計学の応用によって動機付けられている。
スケーリングシステムにおいて,これらのランダム行列の経験的分布の弱い限界を確立する。
我々の結果は、マルテンコ・パストゥル法と半円法の間の自由加法的畳み込みとして特徴づけられる。
論文 参考訳(メタデータ) (2022-05-12T18:50:21Z) - Perturbation Analysis of Randomized SVD and its Applications to
High-dimensional Statistics [8.90202564665576]
一般の「信号+雑音」の枠組みによるRSVDの統計特性について検討する。
3つの統計的推論問題に適用した場合、RSVDのほぼ最適性能保証を導出する。
論文 参考訳(メタデータ) (2022-03-19T07:26:45Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - Computationally Efficient Approximations for Matrix-based Renyi's
Entropy [33.72108955447222]
最近開発された行列ベースのRenyiのエントロピーは、データ内の情報の計測を可能にする。
そのような量の計算には、PSD行列の$G$上のトレース演算子を$alpha$(つまり$tr(Galpha)$)の電力とする。
我々は、この新しいエントロピー汎函数に対する計算学的に効率的な近似を示し、その複雑性を$O(n2)$よりもはるかに小さくすることができる。
論文 参考訳(メタデータ) (2021-12-27T14:59:52Z) - High-Dimensional Gaussian Process Inference with Derivatives [90.8033626920884]
低データ状態の$ND$では、Gram行列は$mathcalO(N2D + (N2)3)$に推論のコストを下げる方法で分解できることを示す。
最適化や予測勾配を持つハミルトニアンモンテカルロなど、機械学習に関連する様々なタスクでこの可能性を実証する。
論文 参考訳(メタデータ) (2021-02-15T13:24:41Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
本稿では、データサンプルの数が$n$である現実的な環境で、ランダムフーリエ(RFF)回帰の正確さを特徴付けます。
この分析はまた、大きな$n,p,N$のトレーニングとテスト回帰エラーの正確な推定も提供する。
論文 参考訳(メタデータ) (2020-06-09T02:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。