論文の概要: Anomaly-based Framework for Detecting Power Overloading Cyberattacks in Smart Grid AMI
- arxiv url: http://arxiv.org/abs/2407.03264v1
- Date: Wed, 3 Jul 2024 16:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 13:17:22.530209
- Title: Anomaly-based Framework for Detecting Power Overloading Cyberattacks in Smart Grid AMI
- Title(参考訳): スマートグリッドAMIにおける電力過負荷検出のための異常ベースフレームワーク
- Authors: Abdelaziz Amara Korba, Nouredine Tamani, Yacine Ghamri-Doudane, Nour El Islem karabadji,
- Abstract要約: 本稿では回帰決定木に基づく2段階異常検出フレームワークを提案する。
導入された検出手法は、エネルギー消費の規則性と予測可能性を利用して参照消費パターンを構築する。
アイルランドの500人の顧客を対象とした,実世界の公用エネルギー消費データセットに関する広範な実験を行った。
- 参考スコア(独自算出の注目度): 5.5672938329986845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Advanced Metering Infrastructure (AMI) is one of the key components of the smart grid. It provides interactive services for managing billing and electricity consumption, but it also introduces new vectors for cyberattacks. Although, the devastating and severe impact of power overloading cyberattacks on smart grid AMI, few researches in the literature have addressed them. In the present paper, we propose a two-level anomaly detection framework based on regression decision trees. The introduced detection approach leverages the regularity and predictability of energy consumption to build reference consumption patterns for the whole neighborhood and each household within it. Using a reference consumption pattern enables detecting power overloading cyberattacks regardless of the attacker's strategy as they cause a drastic change in the consumption pattern. The continuous two-level monitoring of energy consumption load allows efficient and early detection of cyberattacks. We carried out an extensive experiment on a real-world publicly available energy consumption dataset of 500 customers in Ireland. We extracted, from the raw data, the relevant attributes for training the energy consumption patterns. The evaluation shows that our approach achieves a high detection rate, a low false alarm rate, and superior performances compared to existing solutions.
- Abstract(参考訳): Advanced Metering Infrastructure (AMI)は、スマートグリッドの重要なコンポーネントの1つです。
請求書と電力消費を管理するインタラクティブなサービスを提供しているが、サイバー攻撃のための新しいベクターも導入している。
電力過負荷による破壊的かつ深刻な影響は、スマートグリッドAMIに及んでいるが、文献の研究で対処されているものはほとんどない。
本稿では,回帰決定木に基づく2段階異常検出フレームワークを提案する。
導入した検出手法は、エネルギー消費の規則性と予測可能性を利用して、地区全体とその内の各世帯の基準消費パターンを構築する。
参照消費パターンを使用することで、攻撃者の戦略によらず、サイバー攻撃の電力過負荷を検出することができる。
エネルギー消費負荷の2段階連続モニタリングにより、サイバー攻撃の効率的かつ早期検出が可能になる。
アイルランドの500人の顧客を対象とした,実世界の公用エネルギー消費データセットに関する広範な実験を行った。
生データからエネルギー消費パターンを学習するための関連属性を抽出した。
評価の結果,提案手法は検出率が高く,誤警報率も低く,既存手法と比較して優れた性能を示した。
関連論文リスト
- GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Detection of Energy Consumption Cyber Attacks on Smart Devices [1.515687944002438]
本稿では,受信パケットを解析することにより,スマートホームデバイスに対するエネルギー消費攻撃を検出するための軽量な手法を提案する。
リソースの制約を考慮し、攻撃を検出すると管理者に即座に警告する。
論文 参考訳(メタデータ) (2024-04-30T10:29:25Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
我々はAIのコンピュータビジョン技術を用いて、スマートエネルギー管理のための非侵襲的な負荷監視手法を設計する。
マルチスケールの特徴抽出とアテンション機構を備えたU字型ディープニューラルネットワークを用いて,色特徴画像からすべての電気負荷を認識することを提案する。
論文 参考訳(メタデータ) (2023-08-08T04:52:19Z) - Energy Consumption of Neural Networks on NVIDIA Edge Boards: an
Empirical Model [6.809944967863927]
近年、レイテンシの低減とデータプライバシの保護のために、ディープラーニング推論タスクの実行を、ユーザに近いネットワークのエッジにシフトする傾向があります。
本研究では,現代のエッジノードにおける推論タスクのエネルギ消費をプロファイリングすることを目的とする。
そこで我々は, 検討ボード上である推論タスクのエネルギー消費を推定できる, 単純で実用的なモデルを構築した。
論文 参考訳(メタデータ) (2022-10-04T14:12:59Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - Exploiting Vulnerabilities of Deep Learning-based Energy Theft Detection
in AMI through Adversarial Attacks [1.5791732557395552]
本研究では,一段階攻撃や反復攻撃を含む敵攻撃による深層学習によるエネルギー盗難検出の脆弱性について検討した。
3種類のニューラルネットワークによる評価は,DLモデルによって検出されることなく,敵攻撃者が極めて低消費電力の測定をユーティリティに報告できることを示唆している。
論文 参考訳(メタデータ) (2020-10-16T02:25:40Z) - SearchFromFree: Adversarial Measurements for Machine Learning-based
Energy Theft Detection [1.5791732557395552]
エネルギー盗難は世界中の電力会社に大きな経済的損失をもたらす。
本研究では,エネルギー盗難検出のための優れたMLモデルが,敵攻撃に対して極めて脆弱であることを示す。
論文 参考訳(メタデータ) (2020-06-02T19:25:38Z) - Energy Disaggregation with Semi-supervised Sparse Coding [0.0]
エネルギー分解研究は、集約されたエネルギー消費データを部品機器に分解することを目的としている。
本稿では,エネルギー保全のための大規模家庭用電力利用データセットを用いて,スパース符号化に基づく差別的分散モデルの評価を行った。
論文 参考訳(メタデータ) (2020-04-20T21:05:25Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。