Lattices, Gates, and Curves: GKP codes as a Rosetta stone
- URL: http://arxiv.org/abs/2407.03270v2
- Date: Wed, 10 Jul 2024 08:06:26 GMT
- Title: Lattices, Gates, and Curves: GKP codes as a Rosetta stone
- Authors: Jonathan Conrad, Ansgar G. Burchards, Steven T. Flammia,
- Abstract summary: We explain how GKP Clifford gates arise as symplectic automorphisms of the corresponding GKP lattice.
For a single-mode GKP code, we identify the space of all GKP codes with the moduli space of elliptic curves.
We construct a universal family of GKP codes and show how it gives rise to an explicit construction of fiber bundle fault tolerance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gottesman-Kitaev-Preskill (GKP) codes are a promising candidate for implementing fault tolerant quantum computation in quantum harmonic oscillator systems such as superconducting resonators, optical photons and trapped ions, and in recent years theoretical and experimental evidence for their utility has steadily grown. It is known that logical Clifford operations on GKP codes can be implemented fault tolerantly using only Gaussian operations, and several theoretical investigations have illuminated their general structure. In this work, we explain how GKP Clifford gates arise as symplectic automorphisms of the corresponding GKP lattice and show how they are identified with the mapping class group of suitable genus $n$ surfaces. This correspondence introduces a topological interpretation of fault tolerance for GKP codes and motivates the connection between GKP codes (lattices), their Clifford gates, and algebraic curves, which we explore in depth. For a single-mode GKP code, we identify the space of all GKP codes with the moduli space of elliptic curves, given by the three sphere with a trefoil knot removed, and explain how logical degrees of freedom arise from the choice of a level structure on the corresponding curves. We discuss how the implementation of Clifford gates corresponds to homotopically nontrivial loops on the space of all GKP codes and show that the modular Rademacher function describes a topological invariant for certain Clifford gates implemented by such loops. Finally, we construct a universal family of GKP codes and show how it gives rise to an explicit construction of fiber bundle fault tolerance as proposed by Gottesman and Zhang for the GKP code. On our path towards understanding this correspondence, we introduce a general algebraic geometric perspective on GKP codes and their moduli spaces, which uncovers a map towards many possible routes of future research.
Related papers
- Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Fiber Bundle Fault Tolerance of GKP Codes [0.0]
We investigate multi-mode GKP quantum error-correcting codes from a geometric perspective.
First, we construct their moduli space as a quotient of groups and exhibit it as a fiber bundle over the moduli space of symplectically integral lattices.
We then establish the Gottesman--Zhang conjecture for logical GKP Clifford operations, showing that all such gates arise from parallel transport with respect to a flat connection on this space.
arXiv Detail & Related papers (2024-10-09T18:00:07Z) - Quantum error-correcting codes with a covariant encoding [2.532202013576547]
Given some group $G$ of logical gates, what are the quantum encodings for which these logical gates can be implemented by simple physical operations?
We study this question by constructing a general form of such encoding maps.
For bosonic encodings, we show how to obtain the GKP and cat qudit encodings by considering the appropriate groups, and essentially the simplest physical implementations.
arXiv Detail & Related papers (2023-06-20T15:48:30Z) - Holographic Codes from Hyperinvariant Tensor Networks [70.31754291849292]
We show that a new class of exact holographic codes, extending the previously proposed hyperinvariant tensor networks into quantum codes, produce the correct boundary correlation functions.
This approach yields a dictionary between logical states in the bulk and the critical renormalization group flow of boundary states.
arXiv Detail & Related papers (2023-04-05T20:28:04Z) - Closest lattice point decoding for multimode Gottesman-Kitaev-Preskill
codes [0.8192907805418581]
Quantum error correction (QEC) plays an essential role in fault-tolerantly realizing quantum algorithms of practical interest.
We study multimode Gottesman-Kitaev-Preskill (GKP) codes, encoding a qubit in many oscillators.
We implement a closest point decoding strategy for correcting random shift errors.
arXiv Detail & Related papers (2023-03-08T16:42:42Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Efficient simulation of Gottesman-Kitaev-Preskill states with Gaussian
circuits [68.8204255655161]
We study the classical simulatability of Gottesman-Kitaev-Preskill (GKP) states in combination with arbitrary displacements, a large set of symplectic operations and homodyne measurements.
For these types of circuits, neither continuous-variable theorems based on the non-negativity of quasi-probability distributions nor discrete-variable theorems can be employed to assess the simulatability.
arXiv Detail & Related papers (2022-03-21T17:57:02Z) - Gottesman-Kitaev-Preskill codes: A lattice perspective [0.7734726150561088]
We show how different decoding strategies are precisely related, propose new ways to obtain GKP codes by means of glued lattices and the product of lattices.
We present general results that we illustrate through examples taken from different classes of codes, including scaled self-dual GKP codes and the tensord surface-GKP code.
arXiv Detail & Related papers (2021-09-29T18:08:37Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - Phase-space methods for representing, manipulating, and correcting
Gottesman-Kitaev-Preskill qubits [0.0]
The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic mode is a promising bosonic code for quantum computation.
We present a toolkit for phase-space description and manipulation of GKP encodings.
arXiv Detail & Related papers (2020-12-23T05:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.