論文の概要: Multi-Scale Frequency-Enhanced Deep D-bar Method for Electrical Impedance Tomography
- arxiv url: http://arxiv.org/abs/2407.03335v2
- Date: Fri, 07 Feb 2025 06:37:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:52:54.148577
- Title: Multi-Scale Frequency-Enhanced Deep D-bar Method for Electrical Impedance Tomography
- Title(参考訳): 電気インピーダンストモグラフィーのためのマルチスケール周波数拡張深部Dバー法
- Authors: Xiang Cao, Qiaoqiao Ding, Xiaoqun Zhang,
- Abstract要約: 本稿では,リアルタイムEIT再構築のためのディープラーニングに基づく教師ありアプローチを提案する。
D-bar法に基づいて,高画質化のためのマルチスケール周波数拡張と空間整合性を両立する手法を提案する。
- 参考スコア(独自算出の注目度): 5.112764609048122
- License:
- Abstract: The regularized D-bar method is a popular method for solving Electrical Impedance Tomography (EIT) problems due to its efficiency and simplicity. It utilizes the low-pass truncated scattering data in the non-linear Fourier domain to solve the associated D-bar integral equations, yielding a smooth conductivity approximation. However, the D-bar reconstruction often presents low contrast and resolution due to the absence of accurate high-frequency information and the ill-posedness of the problem. In this paper, we propose a deep learning-based supervised approach for real-time EIT reconstruction. Based on the D-bar method, we propose to utilize both multi-scale frequency enhancement and spatial consistency for a high image quality reconstruction. Additionally, we propose a fixed-point iteration for solving discrete D-bar systems on GPUs for fast computation. Numerical results are performed for both the continuum model and complete electrode model simulation on KIT4 and ACT4 datasets to demonstrate notable improvements in absolute EIT imaging quality.
- Abstract(参考訳): 電気インピーダンストモグラフィー (EIT) 問題を効率と簡易性から解く手法として, 正規化D-bar法が一般的である。
非線型フーリエ領域における低域通過散乱データを用いて、関連するDバー積分方程式を解き、滑らかな導電率近似を与える。
しかし,D-bar再構成では,高精度な高周波情報の欠如や問題への悪影響により,コントラストや分解能が低くなることが多い。
本稿では,リアルタイムEIT再構築のためのディープラーニングに基づく教師ありアプローチを提案する。
D-bar法に基づいて,高画質再構成のためのマルチスケール周波数拡張と空間整合性の両方を活用することを提案する。
さらに,高速計算のためのGPU上での離散Dバー問題を解くための固定点反復法を提案する。
KIT4およびACT4データセット上の連続体モデルと完全電極モデルシミュレーションの両方に対して数値計算を行い、絶対EIT画像品質の顕著な改善を示す。
関連論文リスト
- Deep Learning-Enhanced Preconditioning for Efficient Conjugate Gradient Solvers in Large-Scale PDE Systems [11.712093849918123]
本稿では,グラフニューラルネットワーク(GNN)と従来のICを統合する新しい手法を提案する。
実験の結果、ICと比較してイテレーションの回数が平均24.8%減少した。
このアプローチは、スケールにわたる堅牢な一般化能力を実証する。
論文 参考訳(メタデータ) (2024-12-10T02:34:13Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Diff-INR: Generative Regularization for Electrical Impedance Tomography [6.7667436349597985]
電気インピーダンストモグラフィ(EIT)は、境界測定から体内の導電率分布を再構成する。
EIT再構成は、正確な結果が複雑である不適切な非線形逆問題によって妨げられる。
拡散モデルを用いて生成正規化とインプリシットニューラル表現(INR)を組み合わせた新しい手法であるDiff-INRを提案する。
論文 参考訳(メタデータ) (2024-09-06T14:21:23Z) - Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models [0.0]
エントロピー回帰を用いた最適多段階動的モード分解モデルを決定する手法を提案する。
非一様時間空間を実現するために,高忠実度時間遅延MDDモデルを生成する手法を開発した。
これらのモデルは、非常に効率的で堅牢であることが示されている。
論文 参考訳(メタデータ) (2024-06-17T20:02:43Z) - Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems [0.0]
本研究では,拡散モデルを用いた逆問題解法において,データ一貫性ステップをディープラーニングモデルで更新するディープデータ一貫性(DDC)を提案する。
線形および非線形タスクにおける最先端手法と比較して、DDCは類似度と実性の両方の指標の優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-17T12:54:43Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition [1.933681537640272]
半導体デバイスにおける放射誘起光電流は、複雑な物理モデルを用いてシミュレートすることができる。
複数の個別回路要素の詳細なモデルを評価することは、計算上不可能である。
本稿では,大規模回路シミュレーションで実装可能な小型遅延光電流モデルの学習手順を示す。
論文 参考訳(メタデータ) (2020-08-27T18:21:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。