論文の概要: Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition
- arxiv url: http://arxiv.org/abs/2008.12319v1
- Date: Thu, 27 Aug 2020 18:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 08:39:06.954523
- Title: Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition
- Title(参考訳): 動的モード分解を用いた小型物理認識遅延光電流モデルの学習
- Authors: Joshua Hanson, Pavel Bochev, Biliana Paskaleva
- Abstract要約: 半導体デバイスにおける放射誘起光電流は、複雑な物理モデルを用いてシミュレートすることができる。
複数の個別回路要素の詳細なモデルを評価することは、計算上不可能である。
本稿では,大規模回路シミュレーションで実装可能な小型遅延光電流モデルの学習手順を示す。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiation-induced photocurrent in semiconductor devices can be simulated
using complex physics-based models, which are accurate, but computationally
expensive. This presents a challenge for implementing device characteristics in
high-level circuit simulations where it is computationally infeasible to
evaluate detailed models for multiple individual circuit elements. In this work
we demonstrate a procedure for learning compact delayed photocurrent models
that are efficient enough to implement in large-scale circuit simulations, but
remain faithful to the underlying physics. Our approach utilizes Dynamic Mode
Decomposition (DMD), a system identification technique for learning reduced
order discrete-time dynamical systems from time series data based on singular
value decomposition. To obtain physics-aware device models, we simulate the
excess carrier density induced by radiation pulses by solving numerically the
Ambipolar Diffusion Equation, then use the simulated internal state as training
data for the DMD algorithm. Our results show that the significantly reduced
order delayed photocurrent models obtained via this method accurately
approximate the dynamics of the internal excess carrier density -- which can be
used to calculate the induced current at the device boundaries -- while
remaining compact enough to incorporate into larger circuit simulations.
- Abstract(参考訳): 半導体デバイスにおける放射誘起光電流は、複雑な物理モデルを用いてシミュレートすることができる。
本稿では,複数の回路要素の詳細なモデルを計算的に評価できない高レベル回路シミュレーションにおいて,デバイス特性を実装するための課題を提案する。
本研究は,大規模回路シミュレーションで実装できるほど効率的だが基礎となる物理に忠実な,コンパクトな遅延光電流モデルの学習手順を示す。
本手法は, 特異値分解に基づく時系列データから低次離散時間力学系を学習するシステム識別手法である動的モード分解(DMD)を利用する。
物理認識デバイスモデルを得るために, 両極拡散方程式を数値的に解いて放射パルスによる余剰キャリア密度をシミュレーションし, シミュレーション内部状態をdmdアルゴリズムのトレーニングデータとして利用する。
以上の結果から,本手法により得られた遅延光電流モデルは,デバイス境界での誘導電流を計算できる内部余剰キャリア密度のダイナミクスを正確に近似し,回路シミュレーションに組み込むのに十分なコンパクトさを保った。
関連論文リスト
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T15:22:20Z) - Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators [0.9208007322096533]
本稿では,リアルタイムTDDFTに基づく電子動力学シミュレーションを高速化する新しい手法を提案する。
物理インフォームド制約と高分解能トレーニングデータを活用することにより,精度と計算速度が向上する。
この方法は、レーザー照射された分子や材料のリアルタイム・オンザフライモデリングを可能にする可能性がある。
論文 参考訳(メタデータ) (2024-07-12T18:29:48Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Neural ODE and DAE Modules for Power System Dynamic Modeling [2.342020413587919]
実用的なパワーシステムでは、動的コンポーネントモデリングはモデル決定とモデルキャリブレーションの課題に長年直面してきた。
本稿では, ニューラル常微分方程式 (ODE) の一般的な枠組みに基づいて, 電力系統動的成分モデリングのためのニューラル常微分方程式 (ODE) モジュールとニューラル微分代数方程式 (DAE) モジュールを提案する。
モジュールはオートエンコーダを採用し、状態変数の次元を高め、人工知能ニューラルネットワーク(ANN)でコンポーネントのダイナミクスをモデル化し、数値積分構造を維持する。
論文 参考訳(メタデータ) (2021-10-25T14:15:45Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。