ML Updates for OpenStreetMap: Analysis of Research Gaps and Future Directions
- URL: http://arxiv.org/abs/2407.03365v1
- Date: Fri, 28 Jun 2024 23:51:04 GMT
- Title: ML Updates for OpenStreetMap: Analysis of Research Gaps and Future Directions
- Authors: Lasith Niroshan, James D. Carswell,
- Abstract summary: Maintaining accurate, up-to-date maps is important in any dynamic urban landscape.
Traditional (i.e. largely manual) map production and crowdsourced mapping methods still struggle to keep pace with rapid changes in the built environment.
Tech giants such as Google and Microsoft have already started investigating Machine Learning (ML) techniques to tackle this contemporary mapping problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maintaining accurate, up-to-date maps is important in any dynamic urban landscape, supporting various aspects of modern society, such as urban planning, navigation, and emergency response. However, traditional (i.e. largely manual) map production and crowdsourced mapping methods still struggle to keep pace with rapid changes in the built environment. Such manual mapping workflows are time-consuming and prone to human errors, leading to early obsolescence and/or the need for extensive auditing. The current map updating process in OpenStreetMap provides an example of this limitation, relying on numerous manual steps in its online map updating workflow. To address this, there is a need to explore automating the entire end-to-end map up-dating process. Tech giants such as Google and Microsoft have already started investigating Machine Learning (ML) techniques to tackle this contemporary mapping problem. This paper offers an analysis of these ML approaches, focusing on their application to updating Open-StreetMap in particular. By analysing the current state-of-the-art in this field, this study identi-fies some key research gaps and introduces DeepMapper as a practical solution for advancing the automatic online map updating process in the future.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - ExelMap: Explainable Element-based HD-Map Change Detection and Update [2.79552147676281]
We propose a novel task of explainable element-based HD map change detection and update.
We present ExelMap, an explainable element-based map updating strategy that specifically identifies changed map elements.
This is the first comprehensive problem investigation of real-world end-to-end element-based HD map change detection and update.
arXiv Detail & Related papers (2024-09-16T11:17:33Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
High-definition (HD) semantic maps are crucial in enabling autonomous vehicles to navigate urban environments.
Traditional method of creating offline HD maps involves labor-intensive manual annotation processes.
Recent studies have proposed an alternative approach that generates local maps using online sensor observations.
In this study, we propose Neural Map Prior (NMP), a neural representation of global maps.
arXiv Detail & Related papers (2023-04-17T17:58:40Z) - Haul Road Mapping from GPS Traces [0.0]
This paper investigates the possibility of automatically deriving an accurate representation of the road network using GPS data available from haul trucks operating on site.
Based on shortcomings seen in all tested algorithms, a post-processing step is developed which geometrically analyses the created road map for artefacts typical of free-drive areas on mine sites.
arXiv Detail & Related papers (2022-06-27T04:35:06Z) - Updating Street Maps using Changes Detected in Satellite Imagery [28.25061267734934]
We propose a novel method that leverages the progression of satellite imagery over time to substantially improve accuracy.
Our approach first compares satellite images captured at different times to identify portions of the physical road network that have visibly changed.
We show that our change-based approach reduces map update error rates four-fold.
arXiv Detail & Related papers (2021-10-13T02:50:26Z) - Beyond Road Extraction: A Dataset for Map Update using Aerial Images [3.993449663756883]
We develop a new dataset called MUNO21 for the map update task.
We evaluate several state-of-the-art road extraction methods on MUNO21.
arXiv Detail & Related papers (2021-10-10T03:05:42Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
arXiv Detail & Related papers (2021-01-18T00:09:30Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z) - OpenStreetMap: Challenges and Opportunities in Machine Learning and
Remote Sensing [66.23463054467653]
We present a review of recent methods based on machine learning to improve and use OpenStreetMap data.
We believe that OSM can change the way we interpret remote sensing data and that the synergy with machine learning can scale participatory map making.
arXiv Detail & Related papers (2020-07-13T09:58:14Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
We provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning.
A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping.
It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities.
arXiv Detail & Related papers (2020-06-22T19:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.