論文の概要: FOXANN: A Method for Boosting Neural Network Performance
- arxiv url: http://arxiv.org/abs/2407.03369v1
- Date: Sat, 29 Jun 2024 17:00:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:09:04.965081
- Title: FOXANN: A Method for Boosting Neural Network Performance
- Title(参考訳): FOXANN: ニューラルネットワークの性能向上手法
- Authors: Mahmood A. Jumaah, Yossra H. Ali, Tarik A. Rashid, S. Vimal,
- Abstract要約: 本稿では,最近開発されたFox人工ニューラルネットワークとANNを組み合わせた新しい分類モデルFOXANNを提案する。
Foxは、ANNのバックプロパゲーションアルゴリズムを置き換え、シナプス重みを最適化し、最小損失で高い分類精度を達成し、モデルの一般化と解釈性を改善した。
FOXANNの性能一般化は、Iris Flower、Breaast Cancer Wisconsin、Wineの3つの標準データセットで評価されている。
- 参考スコア(独自算出の注目度): 4.8699089441419146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial neural networks play a crucial role in machine learning and there is a need to improve their performance. This paper presents FOXANN, a novel classification model that combines the recently developed Fox optimizer with ANN to solve ML problems. Fox optimizer replaces the backpropagation algorithm in ANN; optimizes synaptic weights; and achieves high classification accuracy with a minimum loss, improved model generalization, and interpretability. The performance of FOXANN is evaluated on three standard datasets: Iris Flower, Breast Cancer Wisconsin, and Wine. The results presented in this paper are derived from 100 epochs using 10-fold cross-validation, ensuring that all dataset samples are involved in both the training and validation stages. Moreover, the results show that FOXANN outperforms traditional ANN and logistic regression methods as well as other models proposed in the literature such as ABC-ANN, ABC-MNN, CROANN, and PSO-DNN, achieving a higher accuracy of 0.9969 and a lower validation loss of 0.0028. These results demonstrate that FOXANN is more effective than traditional methods and other proposed models across standard datasets. Thus, FOXANN effectively addresses the challenges in ML algorithms and improves classification performance.
- Abstract(参考訳): 人工知能は機械学習において重要な役割を担い、パフォーマンスを改善する必要がある。
本稿では,最近開発されたFoxオプティマイザとANNを組み合わせた新しい分類モデルFOXANNを提案する。
Fox Optimizationrは、ANNのバックプロパゲーションアルゴリズムを置き換え、シナプス重みを最適化し、最小損失で高い分類精度を達成し、モデルの一般化を改善し、解釈可能性を向上させる。
FOXANNのパフォーマンスは、Iris Flower、Breaast Cancer Wisconsin、Wineの3つの標準データセットで評価されている。
本論文は,10倍のクロスバリデーションを用いた100のエポックから抽出し,すべてのデータセットがトレーニングおよび検証段階の両方に関与していることを確認した。
さらに,FOXANNはABC-ANN,ABC-MNN,CROANN,PSO-DNNなどの文献で提案されている従来のANNおよびロジスティック回帰法よりも優れており,精度は0.9969,検証損失は0.0028であった。
これらの結果は、FOXANNが従来の手法や標準データセットにまたがる他のモデルよりも効果的であることを示している。
したがって、FOXANNはMLアルゴリズムの課題に効果的に対処し、分類性能を向上させる。
関連論文リスト
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
深層ニューラルネットワークのための統合トレーニングフレームワークを提案する。
我々は,事前条件付き勾配最適化を利用するMARSの3つの例を紹介する。
その結果,MARSの実装はAdamより一貫して優れていた。
論文 参考訳(メタデータ) (2024-11-15T18:57:39Z) - A model for multi-attack classification to improve intrusion detection
performance using deep learning approaches [0.0]
ここでの目的は、悪意のある攻撃を識別するための信頼性の高い侵入検知メカニズムを作ることである。
ディープラーニングベースのソリューションフレームワークは、3つのアプローチから成り立っている。
最初のアプローチは、adamax、SGD、adagrad、adam、RMSprop、nadam、adadeltaといった7つの機能を持つLong-Short Term Memory Recurrent Neural Network (LSTM-RNN)である。
モデルは特徴を自己学習し、攻撃クラスをマルチアタック分類として分類する。
論文 参考訳(メタデータ) (2023-10-25T05:38:44Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization [51.517956081644186]
グラフベースの拡散フレームワークであるDIFUSCOを導入する。
本フレームワークは, NPC問題を離散0, 1ベクトル最適化問題とみなす。
MIS問題に対して、DIFUSCOは、挑戦的なSATLIBベンチマークにおいて、以前の最先端のニューラルソルバよりも優れている。
論文 参考訳(メタデータ) (2023-02-16T11:13:36Z) - Reducing ANN-SNN Conversion Error through Residual Membrane Potential [19.85338979292052]
スパイキングニューラルネットワーク(SNN)は、低消費電力のユニークな特性とニューロモルフィックチップ上の高速コンピューティングにより、広く学術的な注目を集めている。
本稿では,不均一な誤差を詳細に解析し,それを4つのカテゴリに分割する。
本研究では,残膜電位に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2023-02-04T04:44:31Z) - Optimising Event-Driven Spiking Neural Network with Regularisation and Cutoff [31.61525648918492]
スパイキングニューラルネットワーク(SNN)は、ニューラルネットワークのより近い模倣を提供する。
現在のSNNは一定期間にわたって推測するように訓練されている。
本稿では,効率的な推論を実現するため,推論中にいつでもSNNを停止できるSNNのカットオフを提案する。
論文 参考訳(メタデータ) (2023-01-23T16:14:09Z) - Boosted Dynamic Neural Networks [53.559833501288146]
典型的なEDNNは、ネットワークバックボーンの異なる層に複数の予測ヘッドを持つ。
モデルを最適化するために、これらの予測ヘッドとネットワークバックボーンは、トレーニングデータのバッチ毎にトレーニングされる。
トレーニングと2つのフェーズでのインプットの異なるテストは、トレーニングとデータ分散のテストのミスマッチを引き起こす。
EDNNを勾配強化にインスパイアされた付加モデルとして定式化し、モデルを効果的に最適化するための複数のトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-30T04:23:12Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
スパイクニューラルネットワークは、低消費電力環境における効率的な計算モデルである。
本稿では,SNNを高速かつメモリ効率で学習するためのSNN-to-ANN(SNN2ANN)フレームワークを提案する。
実験結果から,SNN2ANNをベースとしたモデルがベンチマークデータセットで良好に動作することが示された。
論文 参考訳(メタデータ) (2022-06-19T16:52:56Z) - Kernel Based Progressive Distillation for Adder Neural Networks [71.731127378807]
追加のみを含むAdder Neural Networks(ANN)は、エネルギー消費の少ないディープニューラルネットワークを新たに開発する方法を提供する。
すべての畳み込みフィルタを加算フィルタで置き換える場合、精度の低下がある。
本稿では,トレーニング可能なパラメータを増大させることなく,ANNの性能を向上するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-28T03:29:19Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。