論文の概要: A Deterministic Information Bottleneck Method for Clustering Mixed-Type Data
- arxiv url: http://arxiv.org/abs/2407.03389v1
- Date: Wed, 3 Jul 2024 09:06:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 20:20:26.139434
- Title: A Deterministic Information Bottleneck Method for Clustering Mixed-Type Data
- Title(参考訳): 混合型データのクラスタリングのための決定論的情報ボトルネック法
- Authors: Efthymios Costa, Ioanna Papatsouma, Angelos Markos,
- Abstract要約: 混合型データ,すなわち連続変数と分類変数の両方からなるデータをクラスタリングするための情報理論手法を提案する。
この方法は決定論的情報ボトルネックアルゴリズムの変種であり、基盤構造に関する関連情報を保持しながらデータを最適に圧縮する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The method is a variant of the Deterministic Information Bottleneck algorithm which optimally compresses the data while retaining relevant information about the underlying structure. We compare the performance of the proposed method to that of three well-established clustering methods (KAMILA, K-Prototypes, and Partitioning Around Medoids with Gower's dissimilarity) on simulated and real-world datasets. The results demonstrate that the proposed approach represents a competitive alternative to conventional clustering techniques under specific conditions.
- Abstract(参考訳): 本稿では,混合型データ,すなわち連続変数と分類変数の両方からなるデータをクラスタリングするための情報理論手法を提案する。
この方法は決定論的情報ボトルネックアルゴリズムの変種であり、基盤構造に関する関連情報を保持しながらデータを最適に圧縮する。
提案手法の性能をシミュレーションおよび実世界のデータセット上での3つの確立されたクラスタリング手法(KAMILA, K-Prototypes, Partitioning Around Medoids with Gower's Dissimilarity)と比較した。
その結果,提案手法は,特定の条件下での従来のクラスタリング手法に代わる競合的な手法であることが示された。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Mixture of multilayer stochastic block models for multiview clustering [0.0]
本稿では,異なる情報源から得られた複数のクラスタリングを集約する独自の手法を提案する。
モデルパラメータの同定可能性を確立し,これらのパラメータを推定するために変分ベイズEMアルゴリズムを提案する。
この手法は、グローバルな食品取引網の分析に利用され、興味のある構造に繋がる。
論文 参考訳(メタデータ) (2024-01-09T17:15:47Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Clustering Optimisation Method for Highly Connected Biological Data [0.0]
接続クラスタリング評価のための単純な指標が,生物データの最適セグメンテーションにつながることを示す。
この作業の斬新さは、混雑したデータをクラスタリングするための単純な最適化方法の作成にある。
論文 参考訳(メタデータ) (2022-08-08T17:33:32Z) - Data Clustering as an Emergent Consensus of Autonomous Agents [0.0]
本稿では,1次密度誘導コンセンサスプロトコルに基づくデータセグメンテーション手法を提案する。
データセグメンテーションの停止基準につながるコンセンサスモデルを数学的に厳密に分析する。
論文 参考訳(メタデータ) (2022-04-22T09:11:35Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Robust Trimmed k-means [70.88503833248159]
本稿では,外乱点とクラスタポイントを同時に識別するRobust Trimmed k-means (RTKM)を提案する。
RTKMは他の方法と競合することを示す。
論文 参考訳(メタデータ) (2021-08-16T15:49:40Z) - Mixed data Deep Gaussian Mixture Model: A clustering model for mixed
datasets [0.0]
我々はMixed Deep Gaussian Mixture Model (MDGMM)と呼ばれるモデルに基づくクラスタリング手法を提案する。
このアーキテクチャは柔軟性があり、連続データや非連続データにも適用できる。
我々のモデルはデータの連続的な低次元表現を提供し、混合データセットを視覚化するのに有用なツールである。
論文 参考訳(メタデータ) (2020-10-13T19:52:46Z) - Too Much Information Kills Information: A Clustering Perspective [6.375668163098171]
分散に基づくk-クラスタリングタスクに対して,k-平均クラスタリング(k-means clustering)が広く知られていることを含む,単純かつ斬新なアプローチを提案する。
提案手法は、与えられたデータセットからサンプリングサブセットを選択し、サブセット内のデータ情報のみに基づいて決定する。
ある仮定では、結果のクラスタリングは、高い確率で分散に基づく目的の最適度を推定するのに十分である。
論文 参考訳(メタデータ) (2020-09-16T01:54:26Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。