Relational dynamics and Page-Wootters formalism in group field theory
- URL: http://arxiv.org/abs/2407.03432v2
- Date: Mon, 5 Aug 2024 14:40:18 GMT
- Title: Relational dynamics and Page-Wootters formalism in group field theory
- Authors: Andrea Calcinari, Steffen Gielen,
- Abstract summary: Group field theory posits that spacetime is emergent and is hence defined without any background notion of space or time.
There is no obvious notion of coordinate transformations or constraints, and established quantisation methods cannot be directly applied.
We use a parametrised version of group field theory, in which all (geometry and matter) degrees of freedom evolve in a fiducial parameter.
Using the "trinity of relational dynamics", we show that the resulting "clock-neutral" theory is entirely equivalent to a deparametrised canonical group field theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group field theory posits that spacetime is emergent and is hence defined without any background notion of space or time; dynamical questions are formulated in relational terms, in particular using (scalar) matter degrees of freedom as time. Unlike in canonical quantisation of gravitational systems, there is no obvious notion of coordinate transformations or constraints, and established quantisation methods cannot be directly applied. As a result, different canonical formalisms for group field theory have been discussed in the literature. We address these issues using a parametrised version of group field theory, in which all (geometry and matter) degrees of freedom evolve in a fiducial parameter. There is a constraint associated to the freedom of reparametrisation and the Dirac quantisation programme can be implemented. Using the "trinity of relational dynamics", we show that the resulting "clock-neutral" theory is entirely equivalent to a deparametrised canonical group field theory, interpreted in terms of the Page-Wootters formalism. Our results not only show that the deparametrised quantisation is fully covariant and can be seen as encoding the dynamics of joint quantum matter and geometry degrees of freedom, they also appear to be the first application of the Page-Wootters formalism directly to non-perturbative quantum gravity. We show extensions to a setting in which many independent gauge symmetries are introduced, which connects to the "multi-fingered time" idea in quantum gravity and provides a somewhat novel extension of the Page-Wootters formalism.
Related papers
- Second-Order Moment Quantum Fluctuations and Quantum Equivalence Principle [0.0]
We find that the second-order moment quantum fluctuations are actually distinguished into two parts: a dynamic part and a geometric part.
The dynamic part is indeed mass-dependent and governed by a non-zero Hamiltonian in a non-general sigma-covariant inertial frame.
The geometric part is mass-independent and universal, so it is only this part measures the universal second-order moment quantum fluctuation of the spacetime.
arXiv Detail & Related papers (2024-08-19T01:26:01Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Measurement events relative to temporal quantum reference frames [44.99833362998488]
We compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements.
We show that for non-ideal clocks, the purified measurement approach yields time non-local, non-unitary evolution.
arXiv Detail & Related papers (2023-08-21T18:26:12Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - The constraints of post-quantum classical gravity [0.0]
We study a class of theories in which space-time is treated classically, while interacting with quantum fields.
We compute the constraint algebra for a wide class of realisations of the theory.
arXiv Detail & Related papers (2020-11-30T18:48:25Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - The Entropic Dynamics of Quantum Scalar Fields Coupled to Gravity [0.0]
We propose a model for a quantum scalar field propagating in a dynamical space-time.
Rather than modelling the dynamics of the fields, ED models the dynamics of their probabilities.
A particularly significant prediction of this ED model is that the coupling of quantum fields to gravity implies violations of the quantum superposition principle.
arXiv Detail & Related papers (2020-06-09T03:44:36Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Functorial evolution of quantum fields [0.0]
We show how familiar notions from Relativity and quantum causality can be recovered in a purely order-theoretic way.
We formulate theory-independent notions of fields over causal orders in a compositional, functorial way.
We introduce notions of symmetry and cellular automata, which we show to subsume existing definitions of Quantum Cellular Automata.
arXiv Detail & Related papers (2020-03-30T08:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.