AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks
- URL: http://arxiv.org/abs/2407.03506v1
- Date: Wed, 3 Jul 2024 21:07:49 GMT
- Title: AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks
- Authors: Rabah Rahal, Abdelaziz Amara Korba, Nacira Ghoualmi-Zine, Yacine Challal, Mohamed Yacine Ghamri-Doudane,
- Abstract summary: We propose AntibotV, a multilevel behaviour-based framework for vehicular botnets detection in vehicular networks.
The proposed framework combines two main modules for attack detection, the first one monitors the vehicle's activity at the network level, whereas the second one monitors the in-vehicle activity.
The experimental results showed that the proposed framework outperforms existing solutions, it achieves a detection rate higher than 97% and a false positive rate lower than 0.14%.
- Score: 1.3701366534590498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connected cars offer safety and efficiency for both individuals and fleets of private vehicles and public transportation companies. However, equipping vehicles with information and communication technologies raises privacy and security concerns, which significantly threaten the user's data and life. Using bot malware, a hacker may compromise a vehicle and control it remotely, for instance, he can disable breaks or start the engine remotely. In this paper, besides in-vehicle attacks existing in the literature, we consider new zeroday bot malware attacks specific to the vehicular context, WSMP-Flood, and Geo-WSMP Flood. Then, we propose AntibotV, a multilevel behaviour-based framework for vehicular botnets detection in vehicular networks. The proposed framework combines two main modules for attack detection, the first one monitors the vehicle's activity at the network level, whereas the second one monitors the in-vehicle activity. The two intrusion detection modules have been trained on a historical network and in-vehicle communication using decision tree algorithms. The experimental results showed that the proposed framework outperforms existing solutions, it achieves a detection rate higher than 97% and a false positive rate lower than 0.14%.
Related papers
- Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) have great application prospects in autonomous driving.
BadVLMDriver is the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects.
BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon.
arXiv Detail & Related papers (2024-04-19T14:40:38Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
More insidious attacks, which only slightly alter driving behavior, can result in network-wide increases in congestion, fuel consumption, and even crash risk without being easily detected.
We present a traffic model framework for three types of potential cyberattacks: malicious manipulation of vehicle control commands, false data injection attacks on sensor measurements, and denial-of-service (DoS) attacks.
A novel generative adversarial network (GAN)-based anomaly detection model is proposed for real-time identification of such attacks using vehicle trajectory data.
arXiv Detail & Related papers (2023-10-26T01:22:10Z) - A Multilayered Security Infrastructure for Connected Vehicles -- First Lessons from the Field [0.36646002427839136]
We present an integrated security infrastructure comprising network protection, monitoring, incident management, and counteractions.
Our vehicle implements a Software-Defined Networking Ethernet backbone to restrict communication routes.
Our findings indicate attack mitigation times in the vehicle from 257 ms to 328 ms and from 2,168 ms to 2,713 ms traversing the cloud.
arXiv Detail & Related papers (2023-10-16T12:22:29Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
Intrusion Detection Systems (IDSs) that can identify malicious cyber-attacks have been developed.
We propose a novel ensemble IDS framework named Leader Class and Confidence Decision Ensemble (LCCDE)
LCCDE is constructed by determining the best-performing ML model among three advanced algorithms.
arXiv Detail & Related papers (2022-08-05T22:30:34Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
Modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks.
With the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically.
This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks.
arXiv Detail & Related papers (2022-05-07T03:38:26Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet
of Vehicles [12.280524044112708]
A hybrid intrusion detection system (IDS) is proposed to detect both known and unknown attacks on vehicular networks.
The proposed system can detect various types of known attacks with 99.99% accuracy on the CAN-intrusion-dataset.
The average processing time of each data packet on a vehicle-level machine is less than 0.6 ms.
arXiv Detail & Related papers (2021-05-26T17:36:35Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.