論文の概要: Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification
- arxiv url: http://arxiv.org/abs/2407.03596v1
- Date: Thu, 4 Jul 2024 03:04:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:31:32.358874
- Title: Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification
- Title(参考訳): 半教師付き画像分類のための自己適応閾値擬似ラベルと信頼できないサンプルコントラスト損失
- Authors: Xuerong Zhang, Li Huang, Jing Lv, Ming Yang,
- Abstract要約: 擬似ラベルに基づく半教師付きアプローチは、画像分類において2つの問題に悩まされる。
我々は,各クラスの閾値を動的に調整し,信頼性の高いサンプル数を増やす自己適応型閾値擬似ラベル戦略を開発した。
しきい値以下でラベル付けされていないデータを効果的に活用するために、信頼できないサンプルコントラスト損失を提案する。
- 参考スコア(独自算出の注目度): 6.920336485308536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. However, pseudo-labeling-based semi-supervised approaches suffer from two problems in image classification: (1) Existing methods might fail to adopt suitable thresholds since they either use a pre-defined/fixed threshold or an ad-hoc threshold adjusting scheme, resulting in inferior performance and slow convergence. (2) Discarding unlabeled data with confidence below the thresholds results in the loss of discriminating information. To solve these issues, we develop an effective method to make sufficient use of unlabeled data. Specifically, we design a self adaptive threshold pseudo-labeling strategy, which thresholds for each class can be dynamically adjusted to increase the number of reliable samples. Meanwhile, in order to effectively utilise unlabeled data with confidence below the thresholds, we propose an unreliable sample contrastive loss to mine the discriminative information in low-confidence samples by learning the similarities and differences between sample features. We evaluate our method on several classification benchmarks under partially labeled settings and demonstrate its superiority over the other approaches.
- Abstract(参考訳): ラベルのないデータを組み合わせることに成功し、セミ教師付き学習が注目を集めている。
しかし、擬似ラベルに基づく半教師付きアプローチは、画像分類において2つの問題に悩まされる:(1)既存の手法では、事前定義された固定閾値またはアドホック閾値調整スキームを使用することで、性能が低下し、収束が遅くなるため、適切な閾値を適用できない可能性がある。
2) 閾値以下でラベルのないデータを識別すると, 識別情報が失われる。
これらの問題を解決するために,ラベルのないデータを十分に活用するための効果的な手法を開発した。
具体的には、各クラスの閾値を動的に調整し、信頼性の高いサンプル数を増やす自己適応型閾値擬似ラベル戦略を設計する。
一方、閾値以下の信頼度でラベル付きデータを効果的に活用するために、サンプル特徴間の類似点と相違点を学習することにより、低信頼度サンプルの識別情報をマイニングする信頼性の低いサンプルの可逆的損失を提案する。
本手法は,いくつかの分類ベンチマークで部分的にラベル付けされた設定で評価し,他の手法よりも優れていることを示す。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
提案するSSLアルゴリズムであるAllMatchは,擬似ラベル精度の向上とラベルなしデータの100%利用率の向上を実現する。
その結果、AllMatchは既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-06-22T06:59:52Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - Guiding Pseudo-labels with Uncertainty Estimation for Test-Time
Adaptation [27.233704767025174]
Test-Time Adaptation (TTA) は、Unsupervised Domain Adaptation (UDA) の特定のケースであり、モデルがソースデータにアクセスせずにターゲットドメインに適合する。
本稿では,損失再重み付け戦略に基づくTTA設定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-07T10:04:55Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。