Evaluating Language Model Context Windows: A "Working Memory" Test and Inference-time Correction
- URL: http://arxiv.org/abs/2407.03651v2
- Date: Sun, 14 Jul 2024 22:47:13 GMT
- Title: Evaluating Language Model Context Windows: A "Working Memory" Test and Inference-time Correction
- Authors: Amanda Dsouza, Christopher Glaze, Changho Shin, Frederic Sala,
- Abstract summary: Large language models are prominently used in real-world applications, often tasked with reasoning over large volumes of documents.
We propose SWiM, an evaluation framework that addresses the limitations of standard tests.
We also propose medoid voting, a simple, but effective training-free approach that helps alleviate this effect.
- Score: 10.428174043080622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models are prominently used in real-world applications, often tasked with reasoning over large volumes of documents. An exciting development in this space is models boasting extended context capabilities, with some accommodating over 2 million tokens. Such long context model capabilities remain uncertain in production systems, motivating the need to benchmark their performance on real world use cases. We address this challenge by proposing SWiM, an evaluation framework that addresses the limitations of standard tests. Testing the framework on eight long context models, we find that even strong models such as GPT-4 and Claude 3 Opus degrade in performance when information is present in the middle of the context window (lost-in-the-middle effect). Next, in addition to our benchmark, we propose medoid voting, a simple, but effective training-free approach that helps alleviate this effect, by generating responses a few times, each time randomly permuting documents in the context, and selecting the medoid answer. We evaluate medoid voting on single document QA tasks, achieving up to a 24% lift in accuracy. Our code is available at https://github.com/snorkel-ai/long-context-eval.
Related papers
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.
LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.
We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - ReFeR: Improving Evaluation and Reasoning through Hierarchy of Models [12.035509884945789]
We introduce a tuning-free framework called ReFeR, designed to evaluate generative outputs, including both text and images.
We rigorously evaluate our framework, ReFeR, across four diverse evaluation tasks.
Experiments on four reasoning tasks demonstrate superior collective reasoning abilities of the framework.
arXiv Detail & Related papers (2024-07-16T08:25:26Z) - Fennec: Fine-grained Language Model Evaluation and Correction Extended through Branching and Bridging [25.078498180620425]
We present a step-by-step evaluation framework, textbfFennec, capable of textbfFine-grained textbfEvaluatiotextbfN textbfExtended through brantextbfChing and bridging.
We employ the fine-grained correction capabilities induced by the evaluation model to refine multiple model responses, leading to an improvement of 1-2 points on the MT-Bench.
arXiv Detail & Related papers (2024-05-20T16:47:22Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Fast and Accurate Factual Inconsistency Detection Over Long Documents [19.86348214462828]
We introduce SCALE, a task-agnostic model for detecting factual inconsistencies using a novel chunking strategy.
This approach achieves state-of-the-art performance in factual inconsistency detection for diverse tasks and long inputs.
We have released our code and data publicly to GitHub.
arXiv Detail & Related papers (2023-10-19T22:55:39Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Making Retrieval-Augmented Language Models Robust to Irrelevant Context [55.564789967211844]
An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant.
Recent work has shown that retrieval augmentation can sometimes have a negative effect on performance.
arXiv Detail & Related papers (2023-10-02T18:52:35Z) - Understanding the Effectiveness of Very Large Language Models on Dialog
Evaluation [20.18656308749408]
Large language models (LLMs) have been used for generation and can now output human-like text.
This paper investigates how the number of examples in the prompt and the type of example selection used affect the model's performance.
arXiv Detail & Related papers (2023-01-27T22:02:27Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - RethinkCWS: Is Chinese Word Segmentation a Solved Task? [81.11161697133095]
The performance of the Chinese Word (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks.
In this paper, we take stock of what we have achieved and rethink what's left in the CWS task.
arXiv Detail & Related papers (2020-11-13T11:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.