Generalized Robust Fundus Photography-based Vision Loss Estimation for High Myopia
- URL: http://arxiv.org/abs/2407.03699v2
- Date: Wed, 17 Jul 2024 06:59:32 GMT
- Title: Generalized Robust Fundus Photography-based Vision Loss Estimation for High Myopia
- Authors: Zipei Yan, Zhile Liang, Zhengji Liu, Shuai Wang, Rachel Ka-Man Chun, Jizhou Li, Chea-su Kee, Dong Liang,
- Abstract summary: We propose a novel, parameter-efficient framework to enhance the generalized robustness of VF estimation.
Our method significantly outperforms existing approaches in RMSE, MAE and coefficient correlation for both internal and external validation.
- Score: 6.193135671460362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High myopia significantly increases the risk of irreversible vision loss. Traditional perimetry-based visual field (VF) assessment provides systematic quantification of visual loss but it is subjective and time-consuming. Consequently, machine learning models utilizing fundus photographs to estimate VF have emerged as promising alternatives. However, due to the high variability and the limited availability of VF data, existing VF estimation models fail to generalize well, particularly when facing out-of-distribution data across diverse centers and populations. To tackle this challenge, we propose a novel, parameter-efficient framework to enhance the generalized robustness of VF estimation on both in- and out-of-distribution data. Specifically, we design a Refinement-by-Denoising (RED) module for feature refinement and adaptation from pretrained vision models, aiming to learn high-entropy feature representations and to mitigate the domain gap effectively and efficiently. Through independent validation on two distinct real-world datasets from separate centers, our method significantly outperforms existing approaches in RMSE, MAE and correlation coefficient for both internal and external validation. Our proposed framework benefits both in- and out-of-distribution VF estimation, offering significant clinical implications and potential utility in real-world ophthalmic practices.
Related papers
- Cross-Domain Learning for Video Anomaly Detection with Limited Supervision [12.290352736331602]
Video Anomaly Detection (VAD) automates the identification of unusual events, such as security threats in surveillance videos.
Existing cross-domain VAD methods focus on unsupervised learning, resulting in performance that falls short of real-world expectations.
We introduce a novel weakly-supervised framework for Cross-Domain Learning (CDL) in VAD that incorporates external data during training by estimating its prediction bias and adaptively minimizing that using the predicted uncertainty.
arXiv Detail & Related papers (2024-08-09T17:28:29Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Efficient Multi-View Fusion and Flexible Adaptation to View Missing in Cardiovascular System Signals [4.519437028632205]
Deep learning has facilitated automatic multi-view fusion (MVF) about the cardiovascular system (CVS) signals.
MVF model architecture often amalgamates CVS signals from the same temporal step but different views into a unified representation.
We introduce prompt techniques to aid pretrained MVF models in flexibly adapting to various missing-view scenarios.
arXiv Detail & Related papers (2024-06-13T08:58:59Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - Enhancing Fairness in Neural Networks Using FairVIC [0.0]
Mitigating bias in automated decision-making systems, specifically deep learning models, is a critical challenge in achieving fairness.
We introduce FairVIC, an innovative approach designed to enhance fairness in neural networks by addressing inherent biases at the training stage.
We observe a significant improvement in fairness across all metrics tested, without compromising the model's accuracy to a detrimental extent.
arXiv Detail & Related papers (2024-04-28T10:10:21Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Fairness-Aware Interpretable Modeling (FAIM) for Trustworthy Machine
Learning in Healthcare [6.608905791768002]
We propose Fairness-Aware Interpretable Modeling (FAIM) to improve model fairness without compromising performance.
FAIM features an interactive interface to identify a "fairer" model from a set of high-performing models.
We show FAIM models not only exhibited satisfactory discriminatory performance but also significantly mitigated biases as measured by well-established fairness metrics.
arXiv Detail & Related papers (2024-03-08T11:51:00Z) - VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness [56.87603097348203]
VeCAF uses labels and natural language annotations to perform parametric data selection for PVM finetuning.
VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence.
On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning.
arXiv Detail & Related papers (2024-01-15T17:28:37Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.