Enhancing Fairness in Neural Networks Using FairVIC
- URL: http://arxiv.org/abs/2404.18134v1
- Date: Sun, 28 Apr 2024 10:10:21 GMT
- Title: Enhancing Fairness in Neural Networks Using FairVIC
- Authors: Charmaine Barker, Daniel Bethell, Dimitar Kazakov,
- Abstract summary: Mitigating bias in automated decision-making systems, specifically deep learning models, is a critical challenge in achieving fairness.
We introduce FairVIC, an innovative approach designed to enhance fairness in neural networks by addressing inherent biases at the training stage.
We observe a significant improvement in fairness across all metrics tested, without compromising the model's accuracy to a detrimental extent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mitigating bias in automated decision-making systems, specifically deep learning models, is a critical challenge in achieving fairness. This complexity stems from factors such as nuanced definitions of fairness, unique biases in each dataset, and the trade-off between fairness and model accuracy. To address such issues, we introduce FairVIC, an innovative approach designed to enhance fairness in neural networks by addressing inherent biases at the training stage. FairVIC differs from traditional approaches that typically address biases at the data preprocessing stage. Instead, it integrates variance, invariance and covariance into the loss function to minimise the model's dependency on protected characteristics for making predictions, thus promoting fairness. Our experimentation and evaluation consists of training neural networks on three datasets known for their biases, comparing our results to state-of-the-art algorithms, evaluating on different sizes of model architectures, and carrying out sensitivity analysis to examine the fairness-accuracy trade-off. Through our implementation of FairVIC, we observed a significant improvement in fairness across all metrics tested, without compromising the model's accuracy to a detrimental extent. Our findings suggest that FairVIC presents a straightforward, out-of-the-box solution for the development of fairer deep learning models, thereby offering a generalisable solution applicable across many tasks and datasets.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - Fair CoVariance Neural Networks [34.68621550644667]
We propose Fair coVariance Neural Networks (FVNNs), which perform graph convolutions on the covariance matrix for both fair and accurate predictions.
We prove that FVNNs are intrinsically fairer than analogous PCA approaches thanks to their stability in low sample regimes.
arXiv Detail & Related papers (2024-09-13T06:24:18Z) - Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy.
We present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets.
We introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness.
arXiv Detail & Related papers (2024-02-27T00:59:32Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
arXiv Detail & Related papers (2022-09-15T04:54:21Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.