論文の概要: Neural Probabilistic Logic Learning for Knowledge Graph Reasoning
- arxiv url: http://arxiv.org/abs/2407.03704v1
- Date: Thu, 4 Jul 2024 07:45:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:52:18.245931
- Title: Neural Probabilistic Logic Learning for Knowledge Graph Reasoning
- Title(参考訳): 知識グラフ推論のためのニューラル確率論理学習
- Authors: Fengsong Sun, Jinyu Wang, Zhiqing Wei, Xianchao Zhang,
- Abstract要約: 本稿では,知識グラフの正確な推論を実現するための推論フレームワークを設計することを目的とする。
本稿では,組込みネットワークの表現力を効果的に向上するスコアリングモジュールを提案する。
我々は,変分推論に基づくマルコフ論理ネットワークを組み込むことにより,モデルの解釈可能性を向上させる。
- 参考スコア(独自算出の注目度): 10.473897846826956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph (KG) reasoning is a task that aims to predict unknown facts based on known factual samples. Reasoning methods can be divided into two categories: rule-based methods and KG-embedding based methods. The former possesses precise reasoning capabilities but finds it challenging to reason efficiently over large-scale knowledge graphs. While gaining the ability to reason over large-scale knowledge graphs, the latter sacrifices reasoning accuracy. This paper aims to design a reasoning framework called Neural Probabilistic Logic Learning(NPLL) that achieves accurate reasoning on knowledge graphs. Our approach introduces a scoring module that effectively enhances the expressive power of embedding networks, striking a balance between model simplicity and reasoning capabilities. We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference. We empirically evaluate our approach on several benchmark datasets, and the experimental results validate that our method substantially enhances the accuracy and quality of the reasoning results.
- Abstract(参考訳): 知識グラフ推論(KG reasoning)は、未知の事実を既知の事実サンプルに基づいて予測することを目的としたタスクである。
推論方法は、ルールベースの方法とKG埋め込みベースの方法の2つのカテゴリに分けられる。
前者は正確な推論能力を持っているが、大規模知識グラフよりも効率的に推論することは困難である。
大規模知識グラフを推論する能力を得る一方で、後者は推論精度を犠牲にする。
本稿では,知識グラフの正確な推論を実現するNPLL(Neural Probabilistic Logic Learning)という推論フレームワークを設計することを目的とする。
提案手法では,組込みネットワークの表現力を効果的に向上するスコアリングモジュールを導入し,モデルの単純さと推論能力のバランスを崩す。
我々は,変分推論に基づくマルコフ論理ネットワークを組み込むことにより,モデルの解釈可能性を向上させる。
本研究では,いくつかのベンチマークデータセットに対するアプローチを実験的に評価し,提案手法が推論結果の精度と品質を大幅に向上させることを示す。
関連論文リスト
- LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Continual Reasoning: Non-Monotonic Reasoning in Neurosymbolic AI using
Continual Learning [2.912595438026074]
ニューラルシンボリックシステムと連続学習の手法を組み合わせることで、Logic Networksはより高い精度を得ることができることを示す。
LTNには、知識とデータからの学習のカリキュラムをリコールで導入することにより、継続的な学習が加えられる。
結果は,非単調推論問題において有意な改善が認められた。
論文 参考訳(メタデータ) (2023-05-03T15:11:34Z) - MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning [63.50909998372667]
テキストの論理的ReasonIngに対して,Metaパスを用いたコントラスト学習手法であるMERItを提案する。
2つの新しい戦略が我々の手法の必須要素である。
論文 参考訳(メタデータ) (2022-03-01T11:13:00Z) - MPLR: a novel model for multi-target learning of logical rules for
knowledge graph reasoning [5.499688003232003]
本研究では,知識グラフに基づく推論のための論理規則の学習問題について検討する。
本稿では,学習データを完全に活用するために既存のモデルを改善するMPLRと呼ばれるモデルを提案する。
実験結果は,MPLRモデルが5つのベンチマークデータセット上で最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-12T09:16:00Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
本稿では,複数の手がかりに対する共通点と矛盾点の推測を目的とした知識グラフの比較推論を提案する。
我々は,大規模な知識グラフに対して比較推論機能を提供する,最初のプロトタイプシステムであるKompaReを開発した。
論文 参考訳(メタデータ) (2020-11-06T04:57:37Z) - Neural Logic Reasoning [47.622957656745356]
本稿では,ディープラーニングと論理推論の能力を統合するために,論理統合ニューラルネットワーク(LINN)を提案する。
LINNは、神経モジュールとしてAND、OR、NOTなどの基本的な論理操作を学び、推論のためにネットワークを通して命題論理推論を行う。
実験の結果、LINNはTop-Kレコメンデーションにおいて最先端のレコメンデーションモデルを大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2020-08-20T14:53:23Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z) - Relational Neural Machines [19.569025323453257]
本稿では,学習者のパラメータと一階論理に基づく推論を共同で学習するフレームワークを提案する。
ニューラルネットワークは、純粋な準記号学習の場合の古典的な学習結果とマルコフ論理ネットワークの両方を復元することができる。
適切なアルゴリズム解は、大規模な問題において学習と推論が引き出すことができるように考案されている。
論文 参考訳(メタデータ) (2020-02-06T10:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。