Topological phase transitions via attosecond x-ray absorption spectroscopy
- URL: http://arxiv.org/abs/2407.03737v1
- Date: Thu, 4 Jul 2024 08:41:57 GMT
- Title: Topological phase transitions via attosecond x-ray absorption spectroscopy
- Authors: Juan F. P. Mosquera, Giovanni Cistaro, Mikhail Malakhov, Emilio Pisanty, Alexandre Dauphin, Luis Plaja, Alexis Chacón, Maciej Lewenstein, Antonio Picón,
- Abstract summary: We consider a Chern insulator whose topological phase is tuned via a second-order hopping.
We use an ultrafast scheme with a circularly polarized IR pump pulse and an attosecond x-ray probe pulse.
A laser-induced dichroism-type spectrum shows a clear signature of the topological phase transition.
- Score: 33.7054351451505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a numerical experiment that demonstrates the possibility to capture topological phase transitions via an x-ray absorption spectroscopy scheme. We consider a Chern insulator whose topological phase is tuned via a second-order hopping. We perform time-dynamics simulations of the out-of-equilibrium laser-driven electron motion that enables us to model a realistic attosecond spectroscopy scheme. In particular, we use an ultrafast scheme with a circularly polarized IR pump pulse and an attosecond x-ray probe pulse. A laser-induced dichroism-type spectrum shows a clear signature of the topological phase transition. We are able to connect these signatures with the Berry structure of the system. This work extend the applications of attosecond absorption spectroscopy to systems presenting a non-trivial topological phase.
Related papers
- On the role of chirping in pulsed single photon spectroscopy [0.0]
We investigate the precision of estimating the interaction strength between a two-level system and a single-photon pulse when the latter is subject to chirping.
We show that experimentally feasible measurements are optimal, or close to it, for chirped, pulsed single photon spectroscopy.
arXiv Detail & Related papers (2024-05-04T17:46:11Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Simulation of absorption spectra of molecular aggregates: a Hierarchy of
Stochastic Pure States approach [68.8204255655161]
hierarchy of pure states (HOPS) provides a formally exact solution based on local, trajectories.
Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories.
arXiv Detail & Related papers (2021-11-01T16:59:54Z) - SU(2) hyper-clocks: quantum engineering of spinor interferences for time
and frequency metrology [0.0]
Ramsey's method of separated fields was elaborated boosting over many decades metrological performances of atomic clocks.
A generalization of this interferometric method is presented replacing the two single coherent excitations by arbitrary composite laser pulses.
Hyper-clocks based on three-pulse and five-pulse interrogation protocols are studied and shown to exhibit nonlinear cubic and quintic sensitivities to residual probe-induced light-shifts.
arXiv Detail & Related papers (2021-09-28T09:01:20Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Entangled Two-Photon Absorption Spectroscopy with Varying Pump
Wavelength [0.0]
In virtual-state spectroscopy, information about the energy-level structure of an arbitrary sample is retrieved by Fourier transforming sets of measured two-photon absorption probabilities.
We propose and discuss an extension of entangled two-photon absorption spectroscopy that solves this problem by means of repeated measurements at different pump wavelengths.
arXiv Detail & Related papers (2021-04-23T15:28:40Z) - Quantum process tomography of a M{\o}lmer-S{\o}rensen gate via a global
beam [0.0]
Tomographic analysis of identity and delay processes reveals dominant error contributions from laser decoherence and slow qubit frequency drift.
We use this framework on two co-trapped $40$Ca$+$ ions to analyze both an optimized and an overpowered Molmer-Sorensen gate.
arXiv Detail & Related papers (2021-01-12T18:14:43Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Resonant laser excitation and time-domain imaging of chiral topological
polariton edge states [0.0]
We investigate the dynamics of chiral edge states in topological polariton systems under laser driving.
We find that polaritonic states in a ribbon geometry are excited selectively via their resonance with the pump laser photon frequency.
arXiv Detail & Related papers (2020-03-30T13:57:14Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.