論文の概要: Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes
- arxiv url: http://arxiv.org/abs/2407.03786v1
- Date: Thu, 4 Jul 2024 09:48:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:42:12.525936
- Title: Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes
- Title(参考訳): コンピュータビジョンの解釈性の向上:複合場面の透過的2段階分類
- Authors: Stefan Scholz, Nils B. Weidmann, Zachary C. Steinert-Threlkeld, Eda Keremoğlu, Bastian Goldlücke,
- Abstract要約: 本稿では,透明性問題に対処する2段階の分類手法を提案する。
この手法を、14万枚以上の画像からなる新しいデータセットに適用し、政治的抗議を示すものを検出する。
オブジェクトを知ることは、抗議的なイメージと非抗議的なイメージを区別する分析を可能にする。
- 参考スコア(独自算出の注目度): 0.694388984236049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper's approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.
- Abstract(参考訳): イメージをデータとして扱うことは、政治科学でますます人気が高まっている。
既存の画像分類器の精度は高いが,分類の基盤となる視覚的特徴を体系的に評価することは困難である。
本稿では,この透明性問題に対処する2段階の分類手法を提案する。
第1段階では、画像セグメンタが画像に存在するオブジェクトを検出し、それらのオブジェクトから特徴ベクトルを生成する。
第2段階では、この特徴ベクトルを標準的な機械学習分類器の入力として使用し、画像間の識別を行う。
この手法を、14万枚以上の画像からなる新しいデータセットに適用し、政治的抗議を示すものを検出する。
この分析は,本論文のアプローチの3つの利点を示す。
まず、画像に表示されたオブジェクトに対する人間の理解可能なラベルを提供することで、画像内のオブジェクトの識別が透明性を向上させる。
第二に、これらのオブジェクトを知ることは、抗議画像と非抗議画像とを区別する分析を可能にする。
第3に、国家間のオブジェクトの重要性を比較すると、抗議行動がどう変化するかが明らかになる。
これらの知見は従来のコンピュータビジョン分類器では利用できず、比較研究の新しい機会を提供する。
関連論文リスト
- Recent Advances in Scene Image Representation and Classification [1.8369974607582584]
本稿では,画像分類に広く用いられている既存のシーン画像表現手法について概説する。
我々は、その性能を質的に(例えば、出力の品質、pros/consなど)、量的に(例えば、精度)比較する。
本稿では,従来のコンピュータビジョン(CV)ベースの手法,ディープラーニング(DL)ベースの手法,検索エンジン(SE)ベースの手法について,最近のシーン画像表現手法の詳細な知見と応用について述べる。
論文 参考訳(メタデータ) (2022-06-15T07:12:23Z) - Facing the Void: Overcoming Missing Data in Multi-View Imagery [0.783788180051711]
本稿では,この問題に頑健な多視点画像分類のための新しい手法を提案する。
提案手法は,最先端の深層学習とメートル法学習に基づいて,他のアプリケーションやドメインに容易に適応し,活用することができる。
その結果,提案アルゴリズムは,最先端手法と比較して,多視点画像分類精度の向上を図っている。
論文 参考訳(メタデータ) (2022-05-21T13:21:27Z) - iCAR: Bridging Image Classification and Image-text Alignment for Visual
Recognition [33.2800417526215]
画像分類は,過去10年間の視覚的表現学習における主要なアプローチである。
しかし、画像テキストアライメントによる視覚学習は、特にゼロショット認識において、有望なパフォーマンスを示すようになった。
本稿では,2つの学習課題を効果的に橋渡しする3つの適応型深層融合法を提案する。
論文 参考訳(メタデータ) (2022-04-22T15:27:21Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
コントラストに依存しないアプリケーションのための,最初の混合型自己教師型学習フレームワークを提案する。
クロスドメイン・ミックスアップに基づく画像間の低分散に対処し、画像再構成と透明性予測に基づくプレテキストタスクを構築する。
論文 参考訳(メタデータ) (2022-04-02T16:58:36Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
シーン中心画像における物体検出を改善するために,物体中心画像を活用する。
私たちは、シンプルで驚くほど効果的なフレームワークを提示します。
我々の手法は、レアオブジェクトのオブジェクト検出(およびインスタンスセグメンテーション)の精度を相対的に50%(および33%)向上させることができる。
論文 参考訳(メタデータ) (2021-02-17T17:27:21Z) - Learning Object Detection from Captions via Textual Scene Attributes [70.90708863394902]
キャプションには、オブジェクトの属性やそれらの関係など、画像に関するよりリッチな情報が含まれている、と我々は主張する。
本稿では,この「テキストシーングラフ」の属性を用いて物体検知器を訓練する手法を提案する。
得られたモデルが、いくつかの挑戦的なオブジェクト検出データセットに対して、最先端の結果を達成することを実証的に実証した。
論文 参考訳(メタデータ) (2020-09-30T10:59:20Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
本稿では,意味的に有意な領域を粗い位置で特定する,軽量で教師付きの深層ネットワークを提案する。
次に,これらセマンティック・サリエント領域の深層モデルを画素ワイド・サリエンシ改善として融合する。
提案手法は単純だが有効であり,本手法は主眼をオブジェクトレベルのセマンティック・リグレード問題とみなすための最初の試みである。
論文 参考訳(メタデータ) (2020-08-10T07:12:43Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。