論文の概要: Q-Adapter: Training Your LLM Adapter as a Residual Q-Function
- arxiv url: http://arxiv.org/abs/2407.03856v1
- Date: Thu, 4 Jul 2024 11:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:22:43.801711
- Title: Q-Adapter: Training Your LLM Adapter as a Residual Q-Function
- Title(参考訳): Q-Adapter: LLMアダプタを残留Q-Functionとしてトレーニングする
- Authors: Yi-Chen Li, Fuxiang Zhang, Wenjie Qiu, Lei Yuan, Chengxing Jia, Zongzhang Zhang, Yang Yu,
- Abstract要約: 本稿では,人間フィードバックからの強化学習によって事前訓練された大規模言語モデル(LLM)を下流の嗜好データに適用する問題について考察する。
既存の能力を維持しつつLCMをカスタマイズするために,Q-Adapterという新しい手法を提案する。
- 参考スコア(独自算出の注目度): 28.440590038876465
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider the problem of adapting Large Language Models (LLMs) pre-trained with Reinforcement Learning from Human Feedback (RLHF) to downstream preference data. Naive approaches to achieve this could be supervised fine-tuning on preferred responses or reinforcement learning with a learned reward model. However, the LLM runs the risk of forgetting its initial knowledge as the fine-tuning progresses. To customize the LLM while preserving its existing capabilities, this paper proposes a novel method, named as Q-Adapter. We start by formalizing LLM adaptation as a problem of maximizing the linear combination of two rewards, one of which corresponds to the reward optimized by the pre-trained LLM and the other to the downstream preference data. Although both rewards are unknown, we show that this can be solved by directly learning a new module from the preference data that approximates the \emph{residual Q-function}. We consider this module to be an adapter because the original pre-trained LLM, together with it, can form the optimal customised LLM. Empirically, experiments on a range of domain-specific tasks and safety alignment tasks illustrate the superiority of Q-Adapter in both anti-forgetting and learning from new preferences.
- Abstract(参考訳): 本稿では,RLHF(Reinforcement Learning from Human Feedback)で事前学習したLarge Language Models(LLMs)を,下流の好みデータに適用する問題について考察する。
これを実現するためのナイーブなアプローチは、望ましい反応の微調整や、学習された報酬モデルによる強化学習を監督することができる。
しかし、LSMは微調整が進むにつれて、最初の知識を忘れるリスクを負う。
既存の能力を維持しつつLCMをカスタマイズするために,Q-Adapterという新しい手法を提案する。
まず,2つの報酬の線形結合を最大化する問題としてLLM適応を定式化する。
どちらの報奨も不明であるが、これは \emph{residual Q-function} を近似する選好データから新しい加群を直接学習することで解決できることを示す。
我々は、このモジュールをアダプタとみなす。なぜなら、オリジナルの事前学習LLMとそれと共に、最適なカスタマイズLLMを形成することができるからである。
実証的に、様々なドメイン固有のタスクと安全アライメントタスクの実験は、新しい好みから学習するアンチフォッゲッティングにおいて、Q-Adapterの優位性を示している。
関連論文リスト
- Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
事前訓練された大規模言語モデル(LLM)は、一貫性のある記事を生成するのに優れていますが、そのアウトプットは非現実的、有毒、あるいはユーザの期待に沿わないかもしれません。
現在のアプローチは、モデルアライメントを改善するために、人間のフィードバックによる強化学習を使うことに重点を置いている。
トークンレベルの微粒化によるLCMアライメント向上手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:21:45Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
報酬最適化のための新しいフレームワーク、価値拡張サンプリング(VAS)を提案する。
VASは、ポリシーと値関数を併用することなく、最適報酬最大化ポリシーを解く。
我々のアルゴリズムは、いくつかの報酬を作曲し、展開期間中に各報酬の幅を制御できる新しい能力を解き放ちます。
論文 参考訳(メタデータ) (2024-05-10T17:59:04Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
モデルと人間の嗜好との整合性を高めるために,ExPOと呼ばれる手法を提案する。
ExPOは市販のDPO/RLHFモデルを一貫して改善することを示した。
我々は、アライメントトレーニング中に学んだ報酬信号を増幅するExPOの本質に光を当てた。
論文 参考訳(メタデータ) (2024-04-25T17:39:50Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
本稿では,強化学習のための事前学習信号としてLRFの機能を活用することを提案する。
我々の VLM プレトレーニングアプローチは,従来の LRF の使い方とは違い,ロボット操作タスクにおけるサンプル効率の学習を温めることができる。
論文 参考訳(メタデータ) (2023-08-23T17:37:51Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。